Marine Biology

, Volume 105, Issue 1, pp 39–49 | Cite as

Mucous sheet formation on poritid corals: An evaluation of coral mucus as a nutrient source on reefs

  • M. A. Coffroth


The production, release, and subsequent consumption of coral mucus on reefs has been portrayed as a potential pathway for the transfer of coral and zooxanthellae production to other reef organisms. However, reported mucus production rates and analyses of nutritional value vary widely. Poritid corals provide a test system to measure mucus production because they produce mucous sheets which can be collected quantitatively. Fluid mucus and mucous sheets were collected fromPorites astreoides, P. furcata, P. divaricata during 1986 and 1987 on reefs in the San Blas Islands, Panama, La Parguera, Puerto Rico and the Florida Keys, USA. Mucus samples were collected from Indo-pacific poritids (P. australiensis, P. lutea, P. lobata, andP. murrayensis) on the Great Barrier Reef during 1985. Biochemical analyses of the fluid mucous secretions, and the derivative mucous sheet, indicate that the mucus is primarily a carbohydrateprotein complex.Porites fluid mucus had a mean caloric content of 4.7 cal mg−1 ash-free dry weight (AFDW), while mucous sheets contained 3.5 cal mg−1 AFDW. Sixty-eight percent of the mucous sheet was ash, while fluid mucus was 22% ash. The high ash and low organic contents suggest that mucous sheets have a low nutritional value. C:N ratios varied (range 6.9 to 13.7 for fluid mucus, and 4.8 to 5.9 for mucous sheets), but were similar to typical C:N ratios for marine organisms. Bacterial numbers and chlorophyll a concentrations were higher on mucous sheets than in the surrounding water. Although bacteria aggregate on mucous sheets, bacteria accounted for less than 0.1% of the carbon and nitrogen content of the mucous sheet. Lower C:N ratios in aged mucus, i.e. mucous sheets versus fluid mucus, were attributed to a loss of carbon rather than an increase in nitrogen. Mucous sheet production accounts for a small proportion (< 2% gross photosynthesis) of published values for coral production. In the San Blas Islands, Panama,P. astreoides produced mucous sheets at a rate of 1.5 g C m−2 y−1 and 0.3 g N m−2 y−1.P. astreoides andP. furcata produced mucous sheets with a lunar periodicity and may provide approximately monthly pulses of carbon and nitrogen to the reef food-web. However, the low annual production rates suggest that mucous sheets make a small contribution to overall energy flow on coral reefs.


Coral Reef Great Barrier Reef Mucus Production Coral Production Reef Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Beers, J. R. (1966). Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanogr. 11: 520–528Google Scholar
  2. Benson, A. A., Muscatine, L. (1974). Wax in coral mucus. Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19: 810–814Google Scholar
  3. Blakeney, A. B., Harris, P. J., Henry, R. J., Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. (Amsterdam) 113: 291–299Google Scholar
  4. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917Google Scholar
  5. Bunde, T. A., Dearlove, G. E., Bishop, S. H. (1978). Aminoethylphosphonic acid-containing glycoproteins: the acid mucopolysaccharide-like components in mucus fromMetridium senile (L.). J. exp. Zool. 206: 215–222Google Scholar
  6. Chornesky, E. A., Peters, E. C. (1987). Sexual reproduction and colony growth in the scleractinian coralPorites astreoides. Biol. Bull. mar. biol. Lab., Woods Hole 172: 161–177Google Scholar
  7. Coffroth, M. A. (1985). Mucous sheet formation on poritid corals: effects of altered salinity and sedimentation. Proc. 5th int. Coral Reef Congr. 4: 165–171. [Gabrie, C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  8. Coffroth, M. A. (1988a). A study of mucous sheet production by poritid corals. Ph. D. thesis, University of Miami, FloridaGoogle Scholar
  9. Coffroth, M. A. (1988b). The function and fate of mucous sheets produced by reef coelenterates. Proc. 6th int. Symp. coral Reefs: 2: 15–20 [Choat, J. H. et al. (eds.) Townsville, Australia]Google Scholar
  10. Coles, S. L., Strathmann, R. (1973). Observations on coral mucus “flocs” and their potential trophic significance. Limnol. Oceanogr. 18: 673–678Google Scholar
  11. Coll, J. C., Price, I. R., Konig, G. M., Bowden, B. F. (1987). Algal overgrowth of alcyonacean soft corals. Mar. Biol. 96: 129–135Google Scholar
  12. Cooksey, K. E., Cooksey, B. (1972). Turnover of photosynthetically fixed carbon in reef corals. Mar. Biol. 15: 289–292Google Scholar
  13. Crossland, C. J. (1987). In situ release of mucus and DOC-lipid from the coralsAcropora variabilis andStylophora pistillata. Coral Reefs 6: 35–42Google Scholar
  14. Crossland, C. J., Barnes, D. J., Borowitzka, M. A. (1980a). Diurnal lipid and mucus production in the staghorn coralAcropora acuminata. Mar. Biol. 60: 81–90Google Scholar
  15. Crossland, C. J., Barnes, D. J., Cox, T., Devereux, M. (1980b). Compartmentation and turnover of organic carbon in the staghorn coralAcropora formosa. Mar. Biol. 59: 181–187Google Scholar
  16. Daumas, R., Galois, R., Thomassin, B. A. (1982). Biochemical composition of soft and hard coral mucus on a New Caledonian lagoonal reef. Proc. 4th int. Symp. coral Reefs 2: 59–67. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  17. Daumas, R. Thomassin, B. A. (1977). Protein fractions in coral and zoantharian mucus: possible evolution in coral reef environments. Proc. 3rd int. Symp. coral Reefs 1: 517–523 [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami]Google Scholar
  18. Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements ofPocillophora eyedouxi. Coral Reefs 2: 181–186Google Scholar
  19. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356Google Scholar
  20. Ducklow, H. W., Mitchell, R. (1979a). Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24: 706–714Google Scholar
  21. Ducklow, H. W., Mitchell, R. (1979b). Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24: 715–725Google Scholar
  22. Edmunds, P. J., Davies, P. S. (1986). An energy budget forPorites porites (Scleractinia). Mar. Biol. 92: 339–347Google Scholar
  23. Edmunds, P. J., Davies, P. S. (1989). An energy budget forPorites porites (Scleractinia), growing in a stressed environment. Coral Reefs 8: 37–43Google Scholar
  24. Glynn, P. W. (1973). Ecology of a Caribbean coral reef. ThePorites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22: 1–21Google Scholar
  25. Gottfried, M., Roman, M. R. (1983). Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72: 211–218Google Scholar
  26. Hartnoll, R. G. (1975). The annual cycle ofAlcyonium digitatum. Estuar. cstl mar. Sci. 3: 71–78Google Scholar
  27. Herndl, G. J., Velimirov, B. (1986). Microheterotrophic utilization of mucus released by the Mediterranean coralCladocora cespitosa. Mar. Biol. 90: 363–369Google Scholar
  28. Hirota, J., Szyper, J. P. (1975). Separation of total particulate carbon into inorganic and organic components. Limnol. Oceanogr. 20: 896–900Google Scholar
  29. Hobbie, J. E., Daley, R. J., Jasper, S. (1977). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228Google Scholar
  30. Hunt, S. (1970). Polysaccharide-protein complexes in invertebrates. Academic Press, London, New YorkGoogle Scholar
  31. Hunt, S., Jevons, F. R. (1965). The hypobranchial mucin of the whelkBuccinium undatum L. Biochem J. 97: 701–709Google Scholar
  32. Johannes, R. E. (1967). Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195Google Scholar
  33. Kinsey, D. W. (1985). Metabolism, calcification and carbon production I. Systems level studies. Proc. 5th int. coral Reef Congr. 4: 505–526 [Gabrie, C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  34. Krupp, D. A. (1982a). The composition of the mucus from the mushroom coral,Fungia scutaria. Proc. 4th int. Symp. coral Reefs 2: 69–73 [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  35. Krupp, D. A. (1982b). The composition and production of the mucus of the solitary mushroom coralFungia scutaria (Lamarck) Ph. D. thesis, University of Hawaii, HonoluluGoogle Scholar
  36. Krupp, D. A. (1984). Mucus production by corals exposed during an extreme low tide. Pacif. Sci. 38: 1–11Google Scholar
  37. Krupp, D. A. (1985). An immunochemical study of the mucus from the solitary coralFungia scutaria (Scleractinia, Fungiidae). Bull. mar. Sci. 36: 163–176Google Scholar
  38. Kwart, H., Shashoua, V. E. (1957). The structure and constitution of mucus. Trans. N. Y. Acad. Sci. II 19: 595–612Google Scholar
  39. Lee, Y. C., Montgomery, R. (1961). Determination of hexosamines. Archs Biochem. Biophys. 93: 292–296Google Scholar
  40. Lewis, J. B. (1977). Processes of organic production on coral reefs. Biol. Rev. 52: 305–347Google Scholar
  41. Linley, E. A. S., Koop, K. (1986). Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar. Biol. 92: 457–464Google Scholar
  42. Lowry, O. H., Rosenbough, A., Farr, L. A., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–276Google Scholar
  43. Marsh, J. A. (1970). Primary productivity of reef-building calcareous red algae. Ecology 51: 255–263Google Scholar
  44. Meikle, P. (1986). Chemical and biochemical studies on the mucus fromAcropora formosa and preliminary investigations of mucus from five other coral species. Ph. D. thesis, James Cook University of North Queensland, TownsvilleGoogle Scholar
  45. Meikle, P., Richards, G. N., Yellowlees, D. (1987). Structural characterisation of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coralAcropora formosa. J. biol. Chem. 262: 16941–16947Google Scholar
  46. Meikle, P., Richards, G. N., Yellowlees, D. (1988). Structural investigations on the mucus from six species of coral. Mar. Biol. 99: 187–193Google Scholar
  47. Moriarty, D. J. W., Pollard, P. C., Hunt, W. G. (1985). Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85: 285–292Google Scholar
  48. Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z. (1984). Fate of photosynthetically fixed carbon in light- and shadeadapted colonies of the symbiotic coralStylophora pistillata. Proc. R. Soc. (Ser. B) 222: 181–202Google Scholar
  49. Odum, H. T., Odum, E. O. (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok atoll. Ecol. Monogr. 25: 291–320Google Scholar
  50. Paine, R. T. (1964). Ash and calorie determinations of sponge and opisthobranch tissues. Ecology 45: 384–387Google Scholar
  51. Paine, R. T. (1966). Endothermy in bomb calorimetry. Limnol. Oceanogr. 11: 126–129Google Scholar
  52. Paine, R. T. (1971). The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. Syst. 2: 145–164Google Scholar
  53. Parsons, T. R., Maita, Y., Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Pergamon Press, OxfordGoogle Scholar
  54. Pascal, H., Vacelet, E. (1982). Bacteria utilization of mucus on the coral reef of Aqaba (Red Sea). Proc. 4th int. Symp. coral Reefs 2: 669–677 [Gomez E. D. et al. (eds.) Marine Sciences Center, Philippines, Quezon City]Google Scholar
  55. Paul, J. H., DeFlaun, M. F., Jeffrey, W. H. (1986). Elevated levels of microbial activity in the coral surface microlayer. Mar. Ecol. Prog. Ser. 33: 29–40Google Scholar
  56. Potts, D. C., Done, T. J., Isdale, P. J., Fisk, D. A. (1985). Dominance of a coral community by the genusPorites (Scleractinia). Mar. Ecol. Prog. Ser. 23: 79–84Google Scholar
  57. Qasim, S. Z., Sankaranarayanan, V. N. (1970). Production of particulate organic matter by the reef on Kavaratti atoll (Laccadives). Limnol. Oceanogr. 15: 574–578Google Scholar
  58. Richman, S., Loya, Y., Slobodkin, L. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepodAcartia negligens. Limnol. Oceanogr. 20: 918–923Google Scholar
  59. Rublee, P. A., Lasker, H. R., Gottfried, M., Roman, M. R. (1980). Production and bacterial colonization of mucus from the soft coralBriarium asbestinum. Bull. mar. Sci. 30: 888–893Google Scholar
  60. Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Co., New YorkGoogle Scholar
  61. Slobodkin, L. B., Richman, S. (1961). Calories/gm. in species of animals. Nature, Lond. 191: 299Google Scholar
  62. Smith, S. V., Marsh, J. A. (1973). Organic carbon production on the windward reef flat of Eniwetok atoll. Limnol. Oceanogr. 18: 953–961Google Scholar
  63. Trench, R. K. (1970). Synthesis of a mucous cuticle by a zoanthid. Nature, Lond. 227: 1155–1156Google Scholar
  64. Yonge, C. M. (1963). The biology of reef corals. Adv. mar. Biol. 1: 209–260Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. A. Coffroth
    • 1
  1. 1.Division of Biology and Living Resources, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations