Zeitschrift für Physik B Condensed Matter

, Volume 95, Issue 3, pp 407–414 | Cite as

Competition and cooperation on a toy Autobahn model

  • Stefan Migowsky
  • Thorsten Wanschura
  • Pál Ruján
Article

Abstract

Traffic on an one-lane freeway is simulated using a continuous space-discrete time probabilistic cellular automata model.The effet of different individual driving patterns is estimated by monitoring the traffic flow, the velocity and acceleration distributions, the aver-age number of accidents, and the distribution of density-waves (traffic jams) as a function of traffic density. The number of accidents, traffic jams, and the fuel consumption are drastically reduced by driving strategies adapting to local traffic conditions. At high traffic densities this leads, however, to a decrease in the global traffic throughout.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lapierre, R., Steierwald, G. (eds): Verkehrsleittechnik für den Straßenverkehr, Vol. I. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  2. 2.
    Schütt, H.: Entwicklung und Erprobung eines sehr schnellen, bitorientierten Verkehrssimulationssystems für Straßennetze. Ph.D. Thesis, Technische Universität Hamburg-Harburg 1990Google Scholar
  3. 3.
    Gazis, D.: Traffic science, New York: Wiley 1976Google Scholar
  4. 4.
    Improta, G.: Mathematical programming methods for urban network control. In: Flow control of congested networks, Vol. F38 of NATO ASI. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  5. 5.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. Part II: a theory of traffic flow on long, crowded roads' Proc. R. Soc. London A229, 317 (1955)Google Scholar
  6. 6.
    Richards, P.I.: Shock waves on a highway. Oper. Res.4, 42 (1956)Google Scholar
  7. 7.
    Herman, E.W., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Oper. Res.7, 86 (1959)Google Scholar
  8. 8.
    Prigogine, I., Herman, R.: Kinetic theory of vehicular traffic. Amsterdam: Elsevier 1961Google Scholar
  9. 9.
    Prigogine, I.: A Boltzman-like approach to the statistical theory of traffic flow. In: Theory of traffic flow. Herman, R. (ed.). Amsterdam: Elsevier 1961Google Scholar
  10. 10.
    Herman, R., Prigogine, I.: Science204, 148 (1979)Google Scholar
  11. 11.
    Nagel, K., Schreckenberg, M.: J. Phys. I2, 2221 (1992)Google Scholar
  12. 12.
    Biham, O., Middleton, A.A., Levine, D.: Phys. Rev. A46, R6124 (1992)Google Scholar
  13. 13.
    Schadschneider, A., Schreckenberg, M.: J. Phys. A26, L679 (1993)Google Scholar
  14. 14.
    Nagel, K., Herrmann, H.J.: Physica A199, 254 (1993)Google Scholar
  15. 15.
    Nagel, K., Schleicher, A.: Microscopic traffic modeling on parallel high performance computers Parallel Comput.20 (1994)Google Scholar
  16. 16.
    Beijeren van, H., Kutner, R., Spohn, H.: Phys. Rev. Lett.54, 2026 (1985)Google Scholar
  17. 17.
    Krug, J., Spohn, H.: In: Solids far from equilibrium: growth, morphology and defects. C. Godreche (ed.). Cambridge: Cambridge University Press 1991Google Scholar
  18. 18.
    Wolf, D.E., Tang, L.-H.: Phys. Rev. Lett.65, 1591 (1990); Tang, L.-H., Forrest, B., Wolf, D.: Phys. Rev. A45, 7162 (1992)Google Scholar
  19. 19.
    Kardar, M., Parisi, G., Zhang, Y.: Phys. Rev. Lett.56, 889 (1986)Google Scholar
  20. 20.
    Derrida, B., Domany, E., Mukamel, D.: J. Stat. Phys.69, 667 (1992)Google Scholar
  21. 21.
    Derrida, B., Evans, M.R.: J. Phys. I3, 311 (1992)Google Scholar
  22. 22.
    Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: J. Phys. A26, 1493 (1993)Google Scholar
  23. 23.
    Schütz, G., Domany, E.: J. Stat. Phys.72, 277 (1993)Google Scholar
  24. 24.
    Schütz, G.: J. Stat. Phys.71, 471 (1993)Google Scholar
  25. 25.
    Faieta, B., Huberman, B.A.: Firefly: a synchronization strategy for urban traffic eontrol. Xerox Palo Alto Research Center Preprint. J. Transport. Sci. (submitted for publication)Google Scholar
  26. 26.
    Lee, J.: Phys. Rev. E49, 281 (1994)Google Scholar
  27. 27.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Phys. Rev. Lett.56, 1505 (1986)Google Scholar
  28. 28.
    Neumann von, J., Morgenstern, O.: Theory of games and economic behaviour. Princeton: Princeton University Press 1953Google Scholar
  29. 29.
    Huberman, B.A., Hogg, T.: The behavior of computational ecologies. In: The ecology of computation, pp. 77–115. B.A. Huberman (ed.). Amsterdam: North Holland 1988Google Scholar
  30. 30.
    Landau, L., Lifshitz, E.: Fluid mechanics. London: Pergamon Press 1979Google Scholar
  31. 31.
    Koshi, M., Iwasaki, M., Ohkura, L.: Some findings and an overview on vehicular flow characteristics. Proc 8th Int. Symposium on Transportation and Traffic Theory. Hurdle, Hauer, Stewart (eds.). Toronto 1981Google Scholar
  32. 32.
    May, A.D., Keller, H.: Evaluation of single- and two-regime traffic flow models. Bonn: Straßenbau und Straßenverkehrtechnik, Heft 1969, pp. 37–47 (1968)Google Scholar
  33. 33.
    Zackor, H., Herkt, S.: Verbesserung des Steuerungsmodella zur Wechselwegweisung auf Autobahnen im Rhein/Main-Geoiet. Berat. Ing. Steierwald/Schönharting, i.A. Hersg. Landesamt für Straßenbau, Wiesbaden 1980Google Scholar
  34. 34.
    Smith, John Maynard: Evolution and the theory of games. Cambridge: Cambridge University Press 1982Google Scholar
  35. 35.
    Glance, N.S., Huberman, B.A.: The outbreak of cooperation. J. Math. Soc.17, 281 (1993)Google Scholar
  36. 36.
    Clearwater, S.H., Hogg, T., Huberman, B.A.: Cooperative problem solving. In: Computation: the micro and the macro view, p. 33. B.A. Huberman (ed.) Singapore: World Scientific 1992Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Stefan Migowsky
    • 1
  • Thorsten Wanschura
    • 1
  • Pál Ruján
    • 1
  1. 1.Fachbereich 8-PhysikCarl-von-Ossietzky-UniversitätOldenburgGermany

Personalised recommendations