A preliminary study of aluminium and the tea bush


The phenomenon of uptake of aluminium by the tea bush has been examined in relation to its constancy as a characteristic feature, age of leaf and tree, genetic constitution, resistance to certain diseases, distribution within the plant, interactions with manganese and phosphorus, soil, essentiality and finally in relation to other aluminium-plants.

Strong aluminium absorption appears to be a constant feature for all healthy bushes of any age, the element is stored in the oldest leaves but it does not impart any resistance to “blister blight” but it occurs to a greater extent than normal in flushes with “tea yellows”; it is gene-controlled, there being three distinct levels of accumulation corresponding with the three major divisions of the species. The presence of abundant available aluminium in the soil will not prevent excessive uptake of managanese accompanied by severe leaf scorch and spotting in bright light. Aluminium tends to diminish leaf phosphorus while manganese tends to increase it. Large amounts of available soil manganese may induce greater uptake of aluminium andvice versa. Small quantities of aluminium within tea leaves are associated with degree of greenness, but the large accumulations probably do not serve any useful purpose. Exchangeable soil aluminium may stimulate roots, particularly tap-roots or root-stocks. The tea bush may be a relict plant like so many of other aluminium accumulators.

This is a preview of subscription content, log in to check access.


  1. 1)

    Airy-Shaw, H. K.Symplococarpon hintoni (Bullock) Airy-Shaw. Icones Plantarum t3342 (1937).

  2. 2)

    Bertrand, G. et Levy, G., La teneur des plantes, notamment des plantes alimentaires en aluminium. Compt. Rend. Acad. Sci. Paris192, 525 (1931).

    Google Scholar 

  3. 3)

    Chenery, E. M., The problem of the blue hydrangea. J. Roy. Hort. Soc.62, 304 (1937).

    Google Scholar 

  4. 4)

    Chenery, E. M., Aluminium in the plant world, part I, general survey in dicotyledons. Kew Bulletin, 173 (1948).

  5. 5)

    Chenery, E. M., Aluminium in plants and its relation to plant pigments. Ann. Botany N.S.12, 121 (1948).

    Google Scholar 

  6. 6)

    Chenery, E. M., Aluminium in the plant world, parts II and III, monocotyledons, gymnosperms and cryptogams. Kew Bulletin, 463 (1949).

  7. 7)

    Chenery, E. M., Contributions to the biogeochemistry of aluminium 1948–50. Colonial Office Mimeograph C. 0/1529/51 (1951).

  8. 8)

    Child, R., Tea and soil acidity. Tea Research Inst. E. Africa Ann. Rept.23 (1951).

  9. 9)

    Child, R., The selection of soils suitable for tea. Tea Research Inst. E. Africa, Pam. 5, 6 (1952).

    Google Scholar 

  10. 10)

    Eden, T., Private communication, 1949.

  11. 11)

    Eden, T. and Gadd, C. H., Reports of agricultural chemist and plant pathologist for 1931. Tea Research Inst. Ceylon Bull8, 37 (1932).

    Google Scholar 

  12. 12)

    Editorial, Expansion of plant systematics. Nature158, 535 (1946).

  13. 13)

    von Faber, F. C., Die Kraterpflanzen Javas in physiologisch-ökologischer Beziehung. Arbt. Treub-Laboratorium, Buitenzorg1, 1 (1927).

    Google Scholar 

  14. 14)

    von Faber, F. C., Untersuchungen über die Physiologie der javanischen Solfataren-Pflanzen. Flora118, 89 (1925).

    Google Scholar 

  15. 15)

    Hallier, H., Beiträge zur Kenntnis derLinaceae (DC. 1819) Dumort. Botan. Zentralblatt. Beih.39, 128 (1922).

    Google Scholar 

  16. 16)

    Heslep, J. M., A study of the infertility of two acid soils. Soil Sci.72, 67 (1951).

    Google Scholar 

  17. 17)

    Hutchinson, G. E., The biogeochemistry of aluminium and of certain related elements. Quart. Rev. Biol.18, 1 (1943).

    Google Scholar 

  18. 18)

    Kingdon-Ward, F., Does wild tea exist? Nature165, 297 (1950).

    Google Scholar 

  19. 19)

    Lamb, J., Private communication, 1952.

  20. 20)

    Liebig, G. F., Vanselow, A. P. and Chapman, H. D., Effects of aluminium on copper toxicity as revealed by solution-culture and spectrographic studies of citrus. Soil Sci.53, 341 (1942).

    Google Scholar 

  21. 21)

    Lipman, C. B., Importance of silicon, aluminium and chlorine for higher plants. Soil Sci.45, 189 (1938).

    Google Scholar 

  22. 22)

    McMurtrey, J. E. and Robinson, W. O., Neglected soil constituents that affect plant and animal development. Soils and Men, U.S.D.A. Yearbook, 813 (1938).

  23. 23)

    Neger, F. W., Neue Methoden und Ergebnisse der Microchemie der Pflanzen. Flora116, 323 (1923).

    Google Scholar 

  24. 24)

    Parfenova, E. I. and Troitskii, A. I., Possible causes of a failure of tea bushes. Pochvovedenie, 322 (1951). (Translation by Bureau Inter-africain des Sols, Paris).

  25. 25)

    Pierre, W. H., Hydrogen ion concentration, aluminium concentration in the soil solution and percentage base saturation as factors affecting plant growth on acid soils. Soil Sci.31, 183 (1931).

    Google Scholar 

  26. 26)

    Polynov, B. B., The red crust of weathering and its soils. Pochvovedenie 7 (1944).

  27. 27)

    Polynov, B. B., Leading ideas of the contemporary study of soil formation and development. Pochvovedenie, 3 (1948). (Refs. 26, 27, translated by Commonwealth Bureau of Soil Science).

  28. 28)

    Robinson, W. O., The agricultural significance of the minor elements. Am. Fertilizer89, No. 8, 9 (1938). (for private communication by K. C. Hou).

    Google Scholar 

  29. 29)

    Sealy, J. R., Private communication (1953).

  30. 30)

    Small, J., pH and plants. Bailliere Tindall and Cox, London, 1946.

    Google Scholar 

  31. 31)

    Small, J. and Jackson, T., Relative buffer-index values for root saps of some crop plants. J. Agr. Sci.38, 343 (1948).

    Google Scholar 

  32. 32)

    Sommer, A. L., Studies concerning the essential nature of aluminium and silicon for plant growth. Univ. Calif. Publs. Agr. Sci.5, 57 (1926).

    Google Scholar 

  33. 33)

    Stoklasa, J., Über die Verbreitung des Aluminiums in der Natur. Jena, G. Fischer, 1922.

  34. 34)

    Storey, H. H. and Leach, R., A sulphur-deficiency disease of the tea bush. Ann. Applied Biol.20, 23 (1933).

    Google Scholar 

  35. 35)

    Tauböck, K., Über die Lebensnotwendigkeit des Aluminiums für Pteridophyten. Botan. Arch43, 219 (1942). (Translation by Bureau Inter-africain des Sols, Paris).

    Google Scholar 

  36. 36)

    Tubbs, F. R., Manganese in tea. Tea Research Inst. Ceylon Ann. Rept. 1933. Bull. 11, 36 (1934).

    Google Scholar 

  37. 37)

    Yoshii, Y., Some experiments on the action of aluminium on plants. Sci. Rept. Tôhoku Imp. Univ. (ser. 4),3, 547 (1928).

    Google Scholar 

  38. 38)

    Yoshii, Y. und Jimbo, T., Mikrochemischer Nachweis von Aluminium und sein Vorkommen im Pflanzenreiche. Sci. Rep. Tôhoku Imp. Univ. (ser. 4),7, 65 (1932).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chenery, E.M. A preliminary study of aluminium and the tea bush. Plant Soil 6, 174–200 (1955). https://doi.org/10.1007/BF01343446

Download citation


  • Manganese
  • Aluminium Absorption
  • Bright Light
  • Genetic Constitution
  • Distinct Level