Skip to main content
Log in

Lattice gases and exactly solvable models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We detail the construction of a family of lattice gas automata based on a model of 't Hooft, proceeding by use of symmetry principles to define first the kinematics of the model and then the dynamics. A spurious conserved quantity appears; we use it to effect a radical transformation of the model into one whose spacetime configurations are equivalent to the two-dimensional states of an exactly solvable statistical mechanics model, the symmetric eight-vertex model with parameters restricted to a disorder variety. We comment on the implications of this identification for the original lattice gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ising, Beitrag zur Theorie des Ferromagnetismus,Z. Physik 31:253–258 (1925); R. Peierls, On Ising's model of ferromagnetism,Proc. Camb. Phil. Soc. 32:477–481 (1936); H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. Part I, II,Phys. Rev. 60:252–262, 263–276 (1941); B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973).

    Google Scholar 

  2. C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field,Phys. Rev. Lett. 19:586–588 (1967); B. Sutherland, C. N. Yang, and C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field,Phys. Rev. Lett. 19:588–591 (1967).

    Google Scholar 

  3. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505–1508 (1986).

    Google Scholar 

  4. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, Lattice gas hydrodynamics in two and three dimensions, in Proceedings of the Workshop on Modern Approaches to Large Nonlinear Systems, Santa Fe 1986,Complex Systems 1:649–707 (1987).

    Google Scholar 

  5. B. M. Boghosian and C. D. Levermore, A cellular automaton for Burgers' equation,Complex Systems 1:17–30 (1987); P.-M. Binder, Diffusion in Lattice Gases, Ph.D. thesis. Yale University (1989).

    Google Scholar 

  6. T. Shimomura, G. D. Doolen, B. Hasslacher, and C. Fu, Calculations using lattice gas techniques,Los Alamos Science 1987(Special Issue):201–210.

  7. H. Chen, S. Chen, G. Doolen, Y. C. Lee, and H. Rose, Multithermodynamic phase lattice gas automata incorporating interparticle potentials,Phys. Rev. A 40:2850–2853 (1989); S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, S. Gutman, and B. Travis, Lattice gas automata for flow through porous media, LANL preprint (November 1989).

    Google Scholar 

  8. S. Wolfram, Approaches to complexity engineering,Physica 22D:385–399 (1986).

    Google Scholar 

  9. S. Harris,An Introduction to the Theory of the Boltzmann Equation (Holt, Rinehart and Winston, New York, 1971); C. Cercignani,Mathematical Methods in Kinetic Theory, 2nd ed. (Plenum Press, New York, 1990).

    Google Scholar 

  10. S. Wolfram, Cellular automaton fluids I: Basic theory,J. Stat. Phys. 45:471–526 (1986).

    Google Scholar 

  11. E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed percolation,Phys. Rev. Lett. 53:311–314 (1984); P. Rujàn, Cellular automata and statistical mechanical models,J. Stat. Phys. 49:139–222 (1987); A. Georges and P. Le Doussal, From equilibrium spin models to probabilistic cellular automata,J. Stat. Phys. 54:1011–1064 (1989); J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117–170 (1990).

    Google Scholar 

  12. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982).

    Google Scholar 

  13. G. 't Hooft, A two-dimensional model with discrete general coordinate-invariance, Duke University preprint (1989).

  14. A. B. Zamolodchikov, Tetrahedra equations and integrable systems in three-dimensional space,Sov. Phys. JETP 52:325–336 (1980); Tetrahedron equations and the relativisticS-matrix of straight-strings in 2+1-dimensions,Commun. Math. Phys. 79:489–505 (1981); R. J. Baxter, On Zamolodchikov's solution of the tetrahedron equation,Commun. Math. Phys. 88:185–205 (1983). The Yang-Baxter equations and the Zamolodchikov model,Physica 18D:321–347 (1986).

    Google Scholar 

  15. G. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models,Commun. Math. Phys. 132:253–283 (1990); Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state,Commun. Math. Phys. 140:119–131 (1991).

    Google Scholar 

  16. S. Takesue, Reversible cellular automata and statistical mechanics,Phys. Rev. Lett. 59:2499–2502 (1987); Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties,J. Stat. Phys. 56:371–402 (1989).

    Google Scholar 

  17. Z. Cheng, J. L. Lebowitz, and E. R. Speer, Microscopic shock structure in model particle systems: The Boghosian-Levermore cellular automation revisited,Commun. Pure Appl. Math. 44:971–979 (1991).

    Google Scholar 

  18. C. Destri and H. J. de Vega, Light-cone lattice approach to fermionic theories in 2D. The massive Thirring model,Nucl. Phys. B 290[FS20]:363–391 (1987).

    Google Scholar 

  19. R. I. Nepomechie, Integrable quantum chains and quantum groups, inSuperstrings and Particle Theory, L. Clavelli and B. Harms, eds. (World Scientific, Singapore, 1990), pp. 319–332.

    Google Scholar 

  20. I. G. Enting, Crystal growth models and Ising models: Disorder points,J. Phys. C: Solid State Phys. 10:1379–1388 (1977); M. T. Jaekel and J. M. Maillard, A criterion for disorder solutions of spin models,J. Phys. A: Math. Gen. 18:1229–1238 (1985).

    Google Scholar 

  21. D. Kandel and E. Domany, Rigorous derivation of domain growth kinetics without conservation laws,J. Stat. Phys. 58:685–706 (1990).

    Google Scholar 

  22. D. Kandel, E. Domany, and B. Nienhuis, A six-vertex model as a diffusion problem: Derivation of correlation functions,J. Phys. A: Math. Gen. 23:L755-L762 (1990).

    Google Scholar 

  23. M. N. Barber, Finite-size scaling, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 8 (Academic Press, New York, 1983), Chapter 2; J. L. Cardy, Conformal invariance, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 11 (Academic Press, New York, 1987), Chapter 2.

    Google Scholar 

  24. M. Wadati, T. Deguchi, and Y. Akutsu, Exactly solvable models and knot theory,Phys. Rep. 180:247–332 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasslacher, B., Meyer, D.A. Lattice gases and exactly solvable models. J Stat Phys 68, 575–590 (1992). https://doi.org/10.1007/BF01341764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01341764

Key words

Navigation