Skip to main content
Log in

Lattice Boltzmann computational fluid dynamics in three dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The recent development of the lattice gas method and its extension to the lattice Boltzmann method have provided new computational schemes for fluid dynamics. Both methods are fully paralleled and can easily model many different physical problems, including flows with complicated boundary conditions. In this paper, basic principles of a lattice Boltzmann computational method are described and applied to several three-dimensional benchmark problems. In most previous lattice gas and lattice Boltzmann methods, a face-centered-hyper-cubic lattice in four-dimensional space was used to obtain an isotropic stress tensor. To conserve computer memory, we develop a model which requires 14 moving directions instead of the usual 24 directions. Lattice Boltzmann models, describing two-phase fluid flows and magnetohydrodynamics, can be developed based on this simpler 14-directional lattice. Comparisons between three-dimensional spectral code results and results using our method are given for simple periodic geometries. An important property of the lattice Boltzmann method is that simulations for flow in simple and complex geometries have the same speed and efficiency, while all other methods, including the spectral method, are unable to model complicated geometries efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  2. G. McNamara and G. Zanetti,Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  3. F. Higuera, S. Succi, and R. Benzi,Europhys. Lett. 9:345 (1989).

    Google Scholar 

  4. D. H. Rothman and J. M. Keller,J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  5. J. A. Somers and P. C. Rem,Physica D 47:39 (1991).

    Google Scholar 

  6. S. Chen, G. D. Doolen, K. Eggert, D. Grunau, and E. Y. Loh,Phys. Rev. A 43:245 (1991).

    Google Scholar 

  7. D. H. Rothman,Geophysics 53(4): 509 (1988).

    Google Scholar 

  8. S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, and B. Travis,Physica D 47:72 (1991).

    Google Scholar 

  9. H. Chen and W. H. Matthaeus,Phys. Rev. Lett. 58:1845 (1987).

    Google Scholar 

  10. S. Chen, H. Chen, D. Martinez, and W. H. Matthaeus,Phys. Rev. Lett. 67:3776 (1991).

    Google Scholar 

  11. H. Chen, S. Chen, and W. H. Matthaeus,Phys. Rev. A 45:R5339 (1992).

    Google Scholar 

  12. S. Succi, R. Benzi, and F. Higuera,Physica D 47:219 (1991).

    Google Scholar 

  13. U. Frisch, D. d'Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649–707 (1987).

    Google Scholar 

  14. S. Wolfram,J. Stat. Phys. 45:19–74 (1986).

    Google Scholar 

  15. E. Y. Loh, private communication.

  16. S. Chen, G. D. Doolen, D. Grunau, S. Gutman, and S. Lustig, Modeling non-Newtonian fluids with a lattice Boltzmann equation method, preprint (1991).

  17. S. A. Orszag,Lecture Notes in Computer Science, Vol. 11, G. Goos, Karlsruhe, and J. Hartmanis, eds. (Springer-Verlag, 1974).

  18. R. H. Morf, S. A. Orszag, and U. Frisch,Phys. Rev. Lett. 44:572 (1980).

    Google Scholar 

  19. M. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. Morf, and U. Frisch,J. Fluid Mech. 130:411 (1983).

    Google Scholar 

  20. H. Chen, J. R. Herring, R. M. Kerr, and R. H. Kraichnan,Phys. Fluids 1(11):1844 (1989).

    Google Scholar 

  21. S. Chen, Z. Wang, G. D. Doolen, and X. Shan, Lattice Boltzmann simulations for three dimensional turbulent flows, in preparation (1991).

  22. A. Vincent and M. Meneguzzi,J. Fluid Mech. 225:1891 (1991).

    Google Scholar 

  23. Zhensu She, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Wang, Z., Shan, X. et al. Lattice Boltzmann computational fluid dynamics in three dimensions. J Stat Phys 68, 379–400 (1992). https://doi.org/10.1007/BF01341754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01341754

Key words

Navigation