Skip to main content
Log in

Implementation of the FCHC lattice gas model on the Connection Machine

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The 4-dimensional FCHC lattice gas model has been implemented on a Connection Machine CM-2 with 16K processors. Symmetries are used to reduce the collision table to a size that fits into local memory. This method avoids the degradation of the Reynolds coefficientR *, but at the price of increased computing time. Bit shuffling between parallel lattices is introduced to reduce the discrepancy between measured viscosities and those predicted from the Boltzmann approximation. Thereby a model with a negative shear viscosity is obtained: a fluid having a uniform initial velocity is unstable and organized nonuniform motions develop. Because of the buildup of very strong correlations between the parallel lattices, the discrepancy with the Boltzmann values decreases only very slowly with the number of parallel lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. d'Humières, P. Lallemand, and U. Frisch, Lattice gas models for 3D hydrodynamics,Europhys. Lett. 2:291–297 (1986).

    Google Scholar 

  2. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1:649–707 (1987).

    Google Scholar 

  3. J.-P. Rivet, Simulation d'écoulements tri-dimensionnels par la méthode des gaz sur réseaux: premiers résultats,C. R. Acad. Sci. Paris II 305:751–756 (1987).

    Google Scholar 

  4. J.-P. Rivet, Hydrodynamique par la méthode des gaz sur réseaux, Thèse, Université de Nice (1988).

  5. J.-P. Rivet, M. Hénon, U. Frisch, and D. d'Humières, Simulating fully three-dimensional external flow by lattice gas methods,Europhys. Lett. 7:231–236 (1988).

    Google Scholar 

  6. B. Dubrulle, U. Frisch, M. Hénon, and J.-P. Rivet, Low viscosity lattice gases,J. Stat. Phys. 59:1187–1216 (1990).

    Google Scholar 

  7. J.-P. Rivet, Brisure spontanée de symétrie dans le sillage tridimensionnel d'un cylindre allongé, simulé par la méthode des gaz sur réseaux,C. R. Acad. Sci. Paris II 313:151–157 (1991).

    Google Scholar 

  8. M. Hénon and H. Scholl, Lattice gas simulation of a non-transverse large-scale instability for a modified Kolmogorov flow,Phys. Rev. A 43:5365–5366 (1991).

    Google Scholar 

  9. M. Hénon, Optimization of collision rules in the FCHC lattice gas, and addition of rest particles, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1989), pp. 146–159.

    Google Scholar 

  10. M. Hénon, Viscosity of a lattice gas,Complex Systems 1:763–789 (1987).

    Google Scholar 

  11. J. B. Salem and S. Wolfram, Thermodynamics and hydrodynamics with cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986), pp. 362–366.

    Google Scholar 

  12. B. Boghosian, Three-dimensional FCHC lattice gas simulation on the CM2 Connection Machine, presented at the NATO Advanced Research Workshop on Lattice Gas Methods for PDE's: Theory, Applications and Hardware, Los Alamos, September 6–8, 1989.

  13. J. A. Somers and P. C. Rem, The construction of efficient collision tables for fluid flow computations with cellular automata, inCellular Automata and Modeling of Complex Physical Systems, P. Manneville, ed. (Springer, 1989), pp. 161–177.

  14. G. Westland, Optimizing a reduced collision table for the FCHC-lattice gas automaton, Master's thesis, State University of Utrecht (April 1991).

  15. J. A. Somers and P. C. Rem, Obtaining numerical results from the 3D FCHC-lattice gas,Lecture Notes in Physics 398:59–78 (1992).

    Google Scholar 

  16. M. Hénon, Isometric collision rules for the four-dimensional FCHC lattice gas,Complex Systems 1:475–494 (1987).

    Google Scholar 

  17. K. Diemer, K. Hunt, S. Chen, T. Shimomura, and G. Doolen, Density and velocity dependence of Reynolds numbers for several lattice gas models, inLattice Gas Methods for Partial Differential Equations, G. Doolenet al., eds. (Addison-Wesley, 1990), pp. 137–177.

  18. D. H. Rothman, Negative-viscosity lattice gases,J. Stat. Phys. 56:517–524 (1989).

    Google Scholar 

  19. M. Vergassola, Private communication (1990).

  20. W. D. Hillis,The Connection Machine (MIT Press, Cambridge, Massachusetts, 1985).

    Google Scholar 

  21. Thinking Machines Corporation (Cambridge, Massachusetts), Introduction to Programming in C/Paris, Version 5 (June 1989).

  22. S. Chen, Private communication (22 March 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hénon, M. Implementation of the FCHC lattice gas model on the Connection Machine. J Stat Phys 68, 353–377 (1992). https://doi.org/10.1007/BF01341753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01341753

Key words

Navigation