Skip to main content
Log in

The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

By using several biophysical approximations and considering man as free space model limiting order-of-magnitude values for external electric and magnetic field strengths which may be hazardous for human beings were calculated. Danger may occur by excitation processes below 30 kHz for field strengths exceeding these limiting values; for frequencies larger than 30 kHz, thermal effects are predominant before excitation occurs. The external electric field strength necessary for causing action potentials in the central nervous system exceeds by far the corona forming level. But excitation is possible by strong alternating magnetic fields.

Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a “lower boundary-line” was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded. Other mechanisms should be responsible for demonstrated biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adey, W. R.: Introduction: effects of electromagnetic radiation on the nervous system. Ann. N.Y. Acad. Sci.247, 15–20 (1975)

    Google Scholar 

  2. Barnes, H. C., McElroy, A. J., Charkow, J. H.: Rational analysis of electric fields in live line working. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-86, 482–491 (1967)

    Google Scholar 

  3. Barry, F. E., Walter, M. S., Gallistel, C. R.: On the optimal pulse duration in electrical stimulation of the brain. Physiology and Behavior12, 749–754 (1974)

    Google Scholar 

  4. Be Ment, S. L., Ranck, J. B., Jr.: A quantitative study of electrical stimulation of central myelinated fibers. Exp. Neurology24, 147–170 (1969)

    Google Scholar 

  5. Be Ment, S. L., Ranck, J. B., Jr.: A model for electrical stimulation of central myelinated fibers with monopolar electrodes. Exp. Neurology24, 171–186 (1969)

    Google Scholar 

  6. Bernhardt, J., Pauly, H.: On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field. Biophysik10, 89–98 (1973)

    Google Scholar 

  7. Chen, K.-M., Guru, B. S.: Internal EM field and absorbed power density in human torsos induced by 1-500-MHz EM waves. IEEE Trans. Microwave Theory Tech., Vol. MTT-25, 746–756 (1977)

    Google Scholar 

  8. Childers, D. G.: Evoked responses: electrogenesis, models, methodology, and wavefront reconstruction and tracking analysis. Proceedings IEEE65, 611–626 (1977)

    Google Scholar 

  9. Clark, J. W., Plonsey, R.: The extracellular potential field of the single active nerve fiber in a volume conductor. Biophys. J.8, 842–864 (1968)

    Google Scholar 

  10. Cooper, R., Osselton, J. W., Shaw, J. C.: EEG technology (2nd. ed.). London: Butterworth 1974

    Google Scholar 

  11. Creutzfeld, O. D.: Generality of the functional structure of the neocortex. Naturwissenschaften64, 507–517 (1977)

    Google Scholar 

  12. Durney, C. H., Johnson, C. C., Massoudi, H.: Long-wavelength analysis of plane wave irradiation of a prolate spheroid model of man. IEEE Trans. Microwave Theory Tech., Vol.MTT-23, 266–253 (1975)

    Google Scholar 

  13. Guru, B. S., Chen, K.-M.: Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies. IEEE Trans. Microwave Theory Tech., Vol. MTT-24, 433–440 (1976)

    Google Scholar 

  14. Harman, T. L., Liebfried, T. F., Clark, J. W., Hibbs, C. W.: A comparism of two methods for determining the extracellular potential field of an isolated parkinje strand in a volume conductor. IEEE Trans. Biomed. Eng., BME22, 174–183 (1975)

    Google Scholar 

  15. Hauf, R.: Einfluß elektromagnetischer Felder auf den Menschen. Elektrotechn. Zeitschrift B,28, 181–183 (1976)

    Google Scholar 

  16. Johnson, C. C., Guy, A. W.: Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE, Vol.60, 692–718 (1972)

    Google Scholar 

  17. Johnson, C. C., Durney, C. H., Massoudi, H.: Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals. IEEE Trans. Microwave Theory Tech., Vol. MTT-23, 739–747 (1975)

    Google Scholar 

  18. Katz, B.: Nerve, muscle, and synapse. New York: McGraw-Hill 1966

    Google Scholar 

  19. König, H. L.: Unsichtbare Umwelt. München: Heinz Moos Verlag 1975

    Google Scholar 

  20. Kouwenhoven, W. B., Miller, C. C., Jr., Barnes, H. C., Simpson, J. W., Rorden, H. L., Burgess, T. J.: Body currents in live line working. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-85, 403–411 (1966)

    Google Scholar 

  21. Kouwenhoven, W. B., Langworthy, M. L., Singewald, M. L., Knickerbocker, G. G.: Medical evaluation of man working in AC electric fields. IEEE Trans. on Power Apparatus and Systems, Vol. PAS-86, 506–511 (1967)

    Google Scholar 

  22. Kritikos, H. N., Schwan, H. P.: The distribution of heating potential inside lossy spheres. IEEE Trans. Biomed. Eng., BME22, 457–463 (1975)

    Google Scholar 

  23. Lin, J. C., Guy, A. W., Johnson, C. C.: Power deposition in a spherical model of man exposed to 1–20 MHz electromagnetic fields. IEEE Trans. Microwave Theory Tech., Vol. MTT-21, 791–797 (1973)

    Google Scholar 

  24. Lorente de Nó, R.: Analysis of the distribution of action currents of nerve in volume conductors. Studies from the Rockefeller Institute for Medical Research132, 384–477 (1947)

    Google Scholar 

  25. Michaelson, S. M.: Human exposure to nonionizing radiant energy -potential hazards and safety standards. Proc. IEEE, Vol.60, 389–421 (1972)

    Google Scholar 

  26. Michaelson, S. M.: Microwave and radiofrequency radiation. Document ICP/CEP 803. Copenhagen: WHO 1977

    Google Scholar 

  27. Nicholson, P. W.: Specific impedance of cerebral white matter. Expd. Neurol.13, 386–401 (1965)

    Google Scholar 

  28. Osypka, P.: Meßtechnische Untersuchungen über Stromstärke, Einwirkungsdauer und Stromweg bei elektrischen Wechselstromunfällen an Mensch und Tier. Bedeutung und Auswertung für Starkstromanlagen. Elektromedizin8, 153–179, 193–214 (1963)

    Google Scholar 

  29. Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed. Eng., BME21, 371–381 (1974)

    Google Scholar 

  30. Plonsey, R.: Action potential sources and their volume conduction fields. Proc. IEEE, Vol.65, 601–611 (1977)

    Google Scholar 

  31. Presman, A. S.: Electromagnetic fields and life. New York-London: Plenum Press 1970

    Google Scholar 

  32. Ranck, J. B., Jr., Be Ment, S. L.: The specific impedance of the dorsal columns of cat: an anisotropic medium. Exptl. Neurol.11, 451–463 (1965)

    Google Scholar 

  33. Ranck, J. B., Jr.: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Research98, 417–440 (1975)

    Google Scholar 

  34. Reiter, R.: Sind luftelektrische Größen als Komponenten des Bioklimas in Betracht zu ziehen? Heizung, Lüftung, Haustechnik (VDI)21, 258–262 and 279–285 (1970)

    Google Scholar 

  35. Roberts, W. J., Smith, D. O.: Analysis of threshold currents during microstimulation of fibers in the spinal cord. Acta physiol. scand.89, 384–394 (1973)

    Google Scholar 

  36. Rush, S., Abildskov, J. A., McFee, R.: Resistivity of body tissues at low frequencies. Circ. Res.12, 40–50 (1963)

    Google Scholar 

  37. Rushton, W. A. H.: Effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve. J. Physiol.63, 357–377 (1927)

    Google Scholar 

  38. Schwan, H. P.: Electrical properties of tissues and cell suspensions. Advances in Biological and Medical Physics, Vol. V, 147–209 (1957)

    Google Scholar 

  39. Schwan, H. P.: Electric characteristics of tissues. Biophysik1, 198–208 (1963)

    Google Scholar 

  40. Schwan, H. P.: Biophysics of diathermy. In: Therapeutic heat and cold, p. 63–125 (Licht, S., ed.). New Haven, Conn.: E. Licht 1965

    Google Scholar 

  41. Schwan, H. P.: Interaction of microwave and radio frequency with biological systems. IEEE Trans. Microwave Theory Tech. Vol. MTT-19, 146–152 (1971)

    Google Scholar 

  42. Schwan, H. P.: Microwave radiation: Biophysical considerations and standard criteria. IEEE Trans. Biomed. Eng., BME19, 304–312 (1972)

    Google Scholar 

  43. Schwan, H. P.: Field interaction with biological matter. Ann. N.Y. Acad. Sci.103, 198–213 (1977)

    Google Scholar 

  44. Spach, M. S., Barr, R. C., Serwer, G. A., Kootsey, J. M., Johnson, E. A.: Extracellular potentials related to intracellular action potentials in the dog purkinje system. Circ. Res.30, 505–519 (1972)

    Google Scholar 

  45. Spiegel, R. J.: ELF coupling to spherical models of man and animals. IEEE Trans. Biomed. Eng., BME23, 387–391 (1976)

    Google Scholar 

  46. Spiegel, R. J.: High-voltage electric field coupling to humans using moment method techniques. IEEE Trans. Biomed. Eng., BME24, 466–472 (1977)

    Google Scholar 

  47. Stratton, J. A.: Electromagnetic theory. New York: McGraw-Hill 1941

    Google Scholar 

  48. Taccardi, B.: Distribution of heart potentials of the thoracic surface of normal human subjects. Circ. Res.12, 341–352 (1963)

    Google Scholar 

  49. Wever, R.: Über die Beeinflussung der circadianen Periodik des Menschen durch schwache elektromagnetische Felder. Z. vergl. Physiol.56, 111–128 (1967)

    Google Scholar 

  50. Wise, R. A.: Spread of current from monopolar stimulation of the lateral hypothalamus. Amer. J. Physiol.223, 545–548 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, J. The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz. Radiat Environ Biophys 16, 309–323 (1979). https://doi.org/10.1007/BF01340569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01340569

Keywords

Navigation