Skip to main content
Log in

A theorem on the first heteroclinic tangency in two-dimensional maps. Orientation-preserving cases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using the properties of the Jordan curve, the following theorem on the heteroclinic tangency in orientation-preserving two-dimensional maps is proved: LetT μ :R 2R 2 be a one-parameter family ofC 1 diffeomorphisms andJ=DetDT μ be such that 0<J⩽1 or 1⩽J<∞. LetW n u be the unstable manifold of a hyperbolicn-cycle andW m s the stable manifold of a hyperbolicm-cycle. Suppose that forμ<μ c ,W n u andW m s have no common points, and that forμ>μ c ,W n u andW s/m have a transversal heteroclinic point. Then atμ=μ c ,W n u andW m s are in the first asymptotic heteroclinic tangency except for the following three cases: (1)n=m; both cycles are without reflection. (2)m=2n; then- andm-cycles are with and without reflection, respectively; (3)n=2m; then- andm-cycles are without and with reflection, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wiggins,Global Bifurcations and Chaos (Springer, 1988).

  2. J. Guckenheimer and P. J. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1983).

  3. J. M. Thompson and H. B. Stewart,Nonlinear Dynamics and Chaos (Wiley, 1987).

  4. S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke,Physica 17D:125 (1985).

    MathSciNet  ADS  Google Scholar 

  5. C. Mira,Chaotic Dynamics (World Scientific, 1987).

  6. C. Grebogi, E. Ott, and J. A. Yorke,Physica 24D:243 (1987).

    MathSciNet  ADS  Google Scholar 

  7. E. C. Vazquez, W. H. Jefferys, and A. Sivaramakrishnan,Physica 29D:84 (1987).

    MathSciNet  ADS  Google Scholar 

  8. S. E. Newhouse,Topology 13:9 (1974);Publ. Math. IHES 50:921 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Mañè,Publ. Math. IHES 66:139 (1987).

    Google Scholar 

  10. Y. Yamaguchi,Phys. Lett. A 133:201 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Yamaguchi,Phys. Lett. A 135:259 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Yamaguchi and K. Tanikawa,Phys. Lett. A 142:95 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Yamaguchi and K. Tanikawa,J. Stat. Phys., in press.

  14. R. L. Devaney,An. Introduction to Chaotic Dynamical Systems (Benjamin, 1986).

  15. K. Tanikawa, K. Urata, and Y. Yamaguchi, in preparation.

  16. P. Hartman,Ordinary Differential Equations (Birkhauser, 1982).

  17. K. Tanikawa and Y. Yamaguchi,J. Math. Phys. 28:921 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. K. Kodaira,Introduction to Complex Analysis (Cambridge University Press, 1984).

  19. Y. Yamaguchi and K. Tanikawa, in preparation.

  20. P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, Y., Tanikawa, K. A theorem on the first heteroclinic tangency in two-dimensional maps. Orientation-preserving cases. J Stat Phys 59, 1297–1310 (1990). https://doi.org/10.1007/BF01334752

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01334752

Key words

Navigation