Skip to main content
Log in

The linear-viscoelastic behaviour of a dispersion of transversely rigid spherical capsules

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A rheological model has been derived for the linear-viscoelastic behaviour of a dispersion of transversely rigid spherical capsules. The model incorporates finite thickness of the elastic shell of the capsules, anisotropy of the mechanical properties of the interface and finite volume fraction. The dynamic viscosity of the dispersion is calculated. The influence of the microstructural parameters is considered and the results are compared with those of other models. The model shows that finite thickness of the shell can strongly influence the relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

particle radius

A :

6 × 6 matrix

b :

radius of the cell

B :

6 × 6 matrix

C :

6 × 1 matrix

D :

rate of strain tensor

e :

unit vector

E :

Young's modulus

f :

correction factor

F λ :

force vector

g λ :

scalar quantity defined in eq. (20)

G :

constant proportional to the applied rate of strain

h :

shell thickness

k :

particle index

L :

(=h/2a m ) relative shell thickness

m λ :

resultant surface moment per unit surface

M λ :

resultant bending moment per unit length

M λµ :

resultant twisting moment per unit length

n :

normal vector

N λ :

resultant normal force per unit length

N λµ :

resultant shear force per unit length

p :

pressure

p 0 :

equilibrium pressure

q λ :

resultant loading force per unit surface

Q λ :

resultant shear force per unit length

r :

spherical coordinate

r :

position vector

R :

(=b/a m ) relative cell radius

R λ :

radius of curvature

s :

displacement vector

s λ :

component ofs

S :

area

t :

time

T :

stress tensor in the fluid

T rr ,T ør :

components ofT

u :

velocity vector

u r ,u ø :

spherical components ofu

u 0 :

velocity vector at the sample boundary

V :

(= η(i)(e)) viscosity ratio

V c :

cell volume

∂V c :

cell surface

V p :

particle volume

∂V p :

particle surface

V s :

sample volume

∂V s :

sample surface

X 1, ⋯X 6 :

functions ofR, L, V andv

Y :

6 × 1 matrix

Y 1, ⋯Y 6 :

components ofY

Z :

(= 2ω η (e) a m /(Eh))

α, β :

curvilinear surface coordinates

y λµ :

strain component

ε λ :

strain component

ζ :

distance along the normal to the middle surface

η :

viscosity

η * :

(=η′ − i η″) complex viscosity

η *spec :

(= (η * − η(e))/η(e) = η spec i η spec ) specific complex viscosity

θ :

spherical coordinate

θ λ :

strain component

ϰ:

surface dilatational modulus

K λ :

strain component

µ :

surface shear modulus

v :

Poisson ratio

σ λ :

normal force per unit surface

τ λµ :

shear force per unit surface

φ :

spherical coordinate

Φ :

volume concentration

ω :

angular frequency

ext:

including shell volume

int:

excluding shell volume

l :

longest

m :

middle surface

s :

shortest

α, β, ζ :

component inα, β, ζ direction

e :

external fluid

i :

internal fluid

ζ :

quantity at a distanceζ from the middle surface

References

  1. Oosterbroek M, Mellema J, Lopulissa JS (1981) J Colloid Interface Sc 84:27

    Google Scholar 

  2. Blom C, Mellema J (1984) J Disp Sc Techn 5:193

    Google Scholar 

  3. Bredimas M, Veyssié M (1983) J Non Newtonian Fluid Mech 12:165

    Google Scholar 

  4. Oldroyd JG (1955) Proc Roy Soc London Ser A 232:567

    Google Scholar 

  5. Sakanishi A, Takano Y (1974) Jap J Appl Phys 13:882

    Google Scholar 

  6. Brunn P (1980) Biorheology 17:419

    Google Scholar 

  7. Oosterbroek M, Mellema J (1981) J Colloid Interface Sc 84:14

    Google Scholar 

  8. Barthès-Biesel D, Chhim V (1981) Int J Multiphase Flow 7:493

    Google Scholar 

  9. Takano Y, Sakanishi A (1982) Biorheology 19:599

    Google Scholar 

  10. Seide P (1975) Small elastic deformations of thin shells. Noordhof int. publishing, Leiden, Holland

    Google Scholar 

  11. Landau LD, Lifshitz EM (1959) Fluid Mechanics p 76, Pergamon Press, Oxford

    Google Scholar 

  12. Brenner H (1972) Suspension rheology. In: Schowalter (ed) Progress in heat and mass transfer, vol 5. Pergamon Press, Oxford

    Google Scholar 

  13. Simha R (1952) J Appl Phys 23:1020

    Google Scholar 

  14. Thomas DG (1965) J Colloid Interface Sc 20:267

    Google Scholar 

  15. Safrai VM (1970) J Appl Mech Tech Phys 11:188

    Google Scholar 

  16. Oldroyd JG (1953) Proc Roy Soc London Ser A 218:122

    Google Scholar 

  17. Lamb H (1975) Hydrodynamics, p 596. Cambridge University Press, London

    Google Scholar 

  18. Love AEH (1944) A treatise on the mathematical theory of elasticity (4 e.d., chapter 24). Dover Publications, New York

    Google Scholar 

  19. Barthès-Biesel D, Acrivos A (1973) J Comput Phys 12:403

    Google Scholar 

  20. Hearn AC (1973) Reduce 2 Users manual. University of Utah, Salt Lake City, Utah

    Google Scholar 

  21. Axelrad DR (1970) Adv in Molec Relaxation Processes 2:41

    Google Scholar 

  22. Mellema J, Willemse MWM (1983) Physica 122A:286

    Google Scholar 

  23. Kléman M (1976) Proc Roy Soc London Ser A 347:387

    Google Scholar 

  24. De Gennes PG (1969) J Phys 30:65, C-4

    Google Scholar 

  25. Helfrich W (1973) Z Naturforschung 28C:693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bruijn, R.A., Mellema, J. The linear-viscoelastic behaviour of a dispersion of transversely rigid spherical capsules. Rheol Acta 24, 159–174 (1985). https://doi.org/10.1007/BF01333244

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01333244

Key words

Navigation