Skip to main content
Log in

Continued fractions for some alternating series

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We discuss certain simple continued fractions that exhibit a type of “self-similar” structure: their partial quotients are formed by perturbing and shifting the denominators of their convergents. We prove that all such continued fractions represent transcendental numbers. As an application, we prove that Cahen's constant

$$C = \sum\limits_{i \geqslant 0} {\frac{{( - 1)^i }}{{S_i - 1}}}$$

is transcendental. Here (S n ) isSylvester's sequence defined byS 0=2 andS n+1 =S 2 n S n +1 forn≥0. We also explicitly compute the continued fraction for the numberC; its partial quotients grow doubly exponentially and they are all squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W. W., Davison, J. L.: A remarkable class of continued fractions. Proc. Amer. Math. Soc.65, 194–198 (1977).

    Google Scholar 

  2. Aho, A. V., Sloane, N. J. A.: Some doubly exponential sequences. Fib. Quart.11, 429–437 (1973).

    Google Scholar 

  3. Blanchard, A., Mendès France, M.: Symétrie et transcendance. Bull. Sc. Math.106, 325–335 (1982).

    Google Scholar 

  4. Böhmer, P. E.: Über die Transzendenz gewisser dyadischer Brüche. Math. Ann.96, 367–377 (1926).

    Google Scholar 

  5. Cahen, E.: Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues. Nouvelles Annales de Mathématiques10, 508–514 (1891).

    Google Scholar 

  6. Carmichael, R. D.: Diophantine Analysis. New York: John Wiley & Sons. 1915.

    Google Scholar 

  7. Curtiss, D. R.: On Kellogg's diophantine problem. Amer. Math. Monthly29, 380–387 (1922).

    Google Scholar 

  8. Curtiss, D. R.: Classes of diophantine equations whose positive integral solutions are bounded. Bull. Amer. Math. Soc.35, 859–865 (1929).

    Google Scholar 

  9. Danilov, L. V.: Some classes of transcendental numbers. Matematicheskie Zametki12, 149–154 (1972). (English translation in Math. Notes Acad. Sci. USSR12, 524–527 (1972)).

    Google Scholar 

  10. Davison, J. L.: A series and its associated continued fraction. Proc. Amer. Math. Soc.63, 29–32 (1977).

    Google Scholar 

  11. Erdös, P.: Az\(\frac{1}{{x_1 }} + \frac{1}{{x_2 }} + \cdots \frac{1}{{x_n }} = \frac{a}{b}\) egyenlet egész számú megoldásairól. Mat. Lapok1, 192–210 (1950).

    Google Scholar 

  12. Erdös, P., Straus, E. G.: On the irrationality of certain Ahmes series. J. Indian Math. Soc.27, 129–133 (1964).

    Google Scholar 

  13. Franklin, J. N., Golomb, S. W.: A function-theoretic approach to the study of nonlinear recurring sequences. Pacific J. Math.56, 455–468 (1975).

    Google Scholar 

  14. Golomb, S. W.: On the sum of the reciprocals of the Fermat numbers and related irrationalities. Canad. J. Math.15, 475–478 (1963).

    Google Scholar 

  15. Golomb, S. W.: On certain nonlinear recurring sequences. Amer. Math. Monthly70, 403–405 (1963).

    Google Scholar 

  16. Greene, D. H., Knuth, D. E.: Mathematics for the Analysis of Algorithms. Basel: Birkhäuser. 1982.

    Google Scholar 

  17. Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford. Univ. Press. 1985.

  18. Hensley, D.: Lattice vertex polytopes with few interior lattice points. Pacific J. Math.105, 183–191 (1983).

    Google Scholar 

  19. Kellogg, O. D.: On a diophantine problem. Amer. Math. Monthly28, 300–303 (1921).

    Google Scholar 

  20. Kmošek, M.: Rozwini ecie niektórych liczb niewymiernych na ułamki łańcuchowe. (Master's Thesis). Warsaw: Uniwersytet Warszawski. 1979.

    Google Scholar 

  21. Köhler, G.: Some more predictable continued fractions. Mh. Math.89, 95–100 (1980).

    Google Scholar 

  22. Lagarias, J. C., Ziegler, G. M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math., to appear.

  23. Odoni, R. W. K.: On the prime divisors of the sequencew n+1 =1+w 1...w n . J. London Math. Soc.32, 1–11 (1985).

    Google Scholar 

  24. Pethö, A.: Simple continued fractions for the Fredholm numbers. J. Number Theory14, 232–236 (1982).

    Google Scholar 

  25. van der Poorten, A. J., Shallit, J. O.: Folded continued fractions. Preprint. 1990.

  26. Remez, E. Ya.: On series with alternating signs which may be connected with two algorithms of M. V. Ostrogradskiî for the approximation of irrational numbers. Uspekhi Mat. Nauk6 (No. 5), 33–42 (1951).

    Google Scholar 

  27. Roberts, J.: Elementary Number Theory. MIT Press. 1977.

  28. Roth, K. F.: Rational approximations to algebraic numbers. Mathematika2, 1–20 (1955).

    Google Scholar 

  29. Salzer, H. E.: The approximation of numbers as sums of reciprocals. Amer. Math. Monthly54, 135–142 (1947).

    Google Scholar 

  30. Salzer, H. E.: Further remarks on the approximation of numbers as sums of reciprocals. Amer. Math. Monthly53, 350–356 (1948).

    Google Scholar 

  31. Shallit, J. O.: Simple continued fractions for some irrational numbers. J. Number Theory11, 209–217 (1979).

    Google Scholar 

  32. Shallit, J. O.: Simple continued fractions for some irrational numbers II. J. Number Theory14, 228–231 (1982).

    Google Scholar 

  33. Shallit, J. O.: Sylvester's sequence and the transcendence of Cahen's constant. In: The Mathematical Heritage of Carl Friedrich Gauss. World Scientific Publishing. To appear.

  34. Sloane, N. J. A.: A Handbook of Integer Sequences. New York: Academic Press. 1973.

    Google Scholar 

  35. Sylvester, J. J.: On a point in the theory of vulgar fractions. Amer. J. Math.3, 332–334 (1880).

    Google Scholar 

  36. Sylvester, J. J.: Postscript to note on a point in vulgar fractions. Amer. J. Math.3, 388–389 (1880).

    Google Scholar 

  37. Takenouchi, T.: On an indeterminate equation. Proc. Physico-Mathematical Soc. Japan3, 78–92 (1921).

    Google Scholar 

  38. Tamura, J.: Symmetric continued fractions related to certain series. Manuscript. 1990.

  39. Zaks, J., Perles, M. A., Wills, J. M.: On lattice polytopes having interior lattice points. Elem. Math.37, 44–46 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by NSF grant CCR-8817400 and a Walter Burke award from Dartmouth College.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, J.L., Shallit, J.O. Continued fractions for some alternating series. Monatshefte für Mathematik 111, 119–126 (1991). https://doi.org/10.1007/BF01332350

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332350

Keywords

Navigation