Skip to main content
Log in

On the role of stress-induced migration on time-dependent terminal velocities of falling spheres

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

There is experimental evidence to suggest that even under steady-state conditions the velocity of solid spheres or bubbles moving through viscoelastic fluids can become time dependent. One of the possible explanations offered for interpreting this phenomenon has been the generation of a polymer depleted layer in the line of passage of the particles, which disappears due to the counterbalancing effect of molecular diffusion in the long range. We have done some careful experiments and measured these concentrations to show that no such depletion layers are formed. Alternative explanations of the phenomenon have been examined and the importance of the possible effects of microstructures generated through temporary associations has been emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garner FH, Nissan AH (1946) Nature 158:634–635

    Google Scholar 

  2. Busse WF (1967) J Polym Sci A-2, 5:1261–1281

    Google Scholar 

  3. Schreiber HP, Storey SH (1965) J Polym Sci B3:723

    Google Scholar 

  4. Metzner AB, Conen Y, Rangel Nafaile C (1979) J Non-Newtonian Fluid Mech 5:449–462

    Google Scholar 

  5. Tirrell M, Malone MF (1977) J Polym Sci 15:1569–1583

    Google Scholar 

  6. Aubert JH, Tirrell M (1980) J Chem Phys 72:2694–2701

    Google Scholar 

  7. Aubert JH, Prager S, Tirrell M (1980) J Chem Phys 73:4103–4112

    Google Scholar 

  8. Shafer RH, Laiken N, Zimm BH (1974) Biophys Chem 2:180

    Google Scholar 

  9. Sekhon G, Armstrong RG, John MS (1982) J Polym Sci Polym Phys Ed 20:947–952

    Google Scholar 

  10. Brunn PO (1976) Rheol Acta 15:33

    Google Scholar 

  11. Brunn PO, Chi S (1984) Rheol Acta 23:163–171

    Google Scholar 

  12. Brunn PO (1985) J Polym Sci Polym Phys Ed 23:89–103

    Google Scholar 

  13. Brunn PO (1985) J Rheol 29:859–886

    Google Scholar 

  14. Brunn PO (1987) J Polym Sci Part B: Polym Phys 25:2085–2093

    Google Scholar 

  15. Brunn PO, Grisafi S (1987) J Non-Newtonian Fluid Mech 24:343–363

    Google Scholar 

  16. Petruccione F, Biller P (1988) J Rheol 32:1–21

    Google Scholar 

  17. Ausserre’ D, Hervet H, Rondelez F (1985) Phys Rev Lett 54:1948–1951

    Google Scholar 

  18. Ausserre’ D, Hervet H, Rondelez F (1986) Macromolecules 19:85–88

    Google Scholar 

  19. Dutta A, Mashelkar RA (1983) AIChE J 29:519–521

    Google Scholar 

  20. Dutta A, Mashelkar RA (1985) Chem Eng Commun 33:181–209

    Google Scholar 

  21. Mashelkar RA, Dutta A (1982) Chem Eng Sci 37:969–985

    Google Scholar 

  22. Dutta A, Ravetkar DD, Mashelkar RA (1987) Chem Eng Commun 53:131–147

    Google Scholar 

  23. Mueller-Mohnseen H, Loebl HP, Schauerte W (1987) J Rheol 31:323–336

    Google Scholar 

  24. Carreau PJ, Devic M, Kappellas M (1974) Rheol Acta 13:477–489

    Google Scholar 

  25. Dekee D, Carreau PJ, Mordarski J (1986) Chem Eng Sci 41:2273–2283

    Google Scholar 

  26. Cho YI, Harnett JP, Lee WY (1984) J Non-Newtonian Fluid Mech 15:61–74

    Google Scholar 

  27. Barnett SM, Humphrey AE, Litt M (1966) AIChE J 12:253–259

    Google Scholar 

  28. Scoggins MW, Miller JW (1979) Soc Pet Eng J 19:151–154

    Google Scholar 

  29. Lambert JL (1951) Anal Chem 23:1247–1251

    Google Scholar 

  30. Acharya A, Mashelkar RA, Ulbrecht J (1976) Rheol Acta 15:454

    Google Scholar 

  31. Acharya A, Mashelkar RA, Ulbrecht J (1976) Rheol Acta 15:471

    Google Scholar 

  32. Acharya A, Mashelkar RA, Ulbrecht J (1977) Chem Eng Sci 32:863–872

    Google Scholar 

  33. Cho Y, Hartnett J (1983) J Non-Newtonian Fluid Mech 12:243–247

    Google Scholar 

  34. Chavan VV, Mashelkar RA (1980) In: Mujumdar A, Mashelkar RA (eds) Advances in Transport Processes, pp 210–246

  35. Kulicke WM, Klein J (1978) Angew Makromol Chemie 69:189–210

    Google Scholar 

  36. Kulicke WM, Kniewske R (1980) Makromol Chem 181:823–838

    Google Scholar 

  37. Kulicke WM, Kniewske R (1981) Makromol Chem 182:2277–2287

    Google Scholar 

  38. Kulicke WM, Kniewske R, Klein J (1983) In: Jenkins AD, Stannett VT (eds) Progress in Polymer Science, Vol 8. Pergamon Press, Oxford, pp 413–424

    Google Scholar 

  39. Lapanje S (1978) Physicochemical Aspects of Protein Denaturation. John Wiley, New York, pp 142–156

    Google Scholar 

  40. Dekee D, Carreau PJ (1988) Xth International Congress on Rheology Sydney 1:288–290

    Google Scholar 

  41. Ferguson J, Hudson NE, Warren BCH, Tomatarian A (1987) Nature 325:234–236

    Google Scholar 

  42. Vrahopoulou EP, Mchugh AJ (1987) J Non-Newtonian Fluid Mech 25:157–175

    Google Scholar 

  43. Ferguson J, Hudson NE (1987) J Non-Newtonian Fluid Mech 23:49–72

    Google Scholar 

  44. Peiffer DG, Kim MW, Schulz DN (1987) Polym Sci Part B: Polym Phys 25:1615–1628

    Google Scholar 

  45. Dupuis D, Wolf C (1987) Rheol Acta 26:358–366

    Google Scholar 

  46. Dupuis D, Wolf C (1987) Rheol Acta 26:367–370

    Google Scholar 

  47. Odell JA, Muller AJ, Keller A (1988) Polymer 29:1179–1190

    Google Scholar 

  48. Eustace DJ, Siano DB, Drake EN (1988) J Appl Polym Sci 35:707–716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambeskar, V.D., Mashelkar, R.A. On the role of stress-induced migration on time-dependent terminal velocities of falling spheres. Rheol Acta 29, 182–191 (1990). https://doi.org/10.1007/BF01331354

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01331354

Key words

Navigation