Skip to main content
Log in

Hankel operators and problems of best approximation of unbounded functions

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

For each function f, f ε VMO, there exists a unique function f0, analytic in the circle\(\mathbb{D}\) and such that ∥f−f0=f{∥∶gεVMOA}. We define the operator of best approximation (nonlinear) A, Af=f0, fεVMO, In the paper one considers the question of the preservation of a class under the action of the operator i.e. finding the classes X, X ⊂ VMO, AX ⊂ X. One investigates the classes X containing unbounded functions. It is proved that if P_X is the space of the symbols of the Hankel operators from a Banach space E of functions into the Hardy space H2, then AX ⊂ X. For E one can take “almost” any space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. Carleson and S. Jacobs, “Best uniform approximation by analytic functions,” Ark. Mat.,10, No. 2, 219–229 (1972).

    Google Scholar 

  2. V. V. Peller and S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes,” Usp. Mat. Nauk,37, No. 1, 53–124 (1982).

    Google Scholar 

  3. A. L. Volberg, “Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason,” J. Operator Theory,7, No. 2, 209–218 (1982).

    Google Scholar 

  4. M. A. Krasnosel'skii and Ya. B. Rutitskii (Ya. B. Rutickii), Convex Functions and Orlicz Spaces, Noordhoff, Groningen (1961).

    Google Scholar 

  5. S. Janson, “Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation,” Duke Math. J.,47, No. 4, 959–982 (1980).

    Google Scholar 

  6. J. L. Kelley, I. Namioka et al., Linear Topological Spaces, Springer, New York (1976).

    Google Scholar 

  7. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer, Berlin (1979).

    Google Scholar 

  9. A. B. Aleksandrov, “Essays on nonlocally convex Hardy classes,” Lect. Notes Math., No. 864, 1–89 (1981).

    Google Scholar 

  10. S. Prossdorf, Some Classes of Singular Equations, North-Holland, Amsterdam (1978).

    Google Scholar 

  11. V. A. Tolokonnikov, “Hankel and Toeplitz operators in Hardy spaces,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,141, 165–175 (1985).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 141, pp. 5–17, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vol'berg, A.L., Tolokonnikov, V.A. Hankel operators and problems of best approximation of unbounded functions. J Math Sci 37, 1269–1275 (1987). https://doi.org/10.1007/BF01327036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01327036

Keywords

Navigation