Advertisement

Radiation and Environmental Biophysics

, Volume 16, Issue 1, pp 29–41 | Cite as

Radioprotection by DMSO of mammalian cells exposed to X-rays and to heavy charged-particle beams

  • J. D. Chapman
  • S. D. Doern
  • A. P. Reuvers
  • C. J. Gillespie
  • A. Chatterjee
  • E. A. Blakely
  • K. C. Smith
  • C. A. Tobias
Article

Summary

Populations of G1-phase Chinese hamster cells in stirred suspensions containing various concentrations of DMSO were irradiated with 250 kV X-rays or various heavy charged-particle beams. Chemical radioprotection of cell inactivation was observed for all LET values studied. When cell survival data were resolved into linear and quadratic components, the extent and concentration dependence of DMSO protection were found to be different for the two mechanisms. The chemical kinetics of radioprotection for single-events were similar for LET values up to those which gave the maximum RBE. DMSO protected to a lesser extent against energetic argon ions at an median LET of ∼ 220 keV/µm. These data could indicate the contribution of indirect action by hydroxyl radicals and hydrogen atoms to cell inactivation by single-hit and double-hit mechanisms for various radiation qualities. The decrease in RBE observed at very high LET may result, in part, from reduced yields of water radicals at 10−9−10−8 s resulting from radical recombination mechanisms within the charged particle tracks.

Keywords

DMSO Recombination Hydrogen Atom Charged Particle Concentration Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, G. E.: Personal communicationGoogle Scholar
  2. 2.
    Ashwood-Smith, M. J.: The radioprotective action of DMSO and various other sulfoxides. Int. J. Radiat. Biol.3, 41–48 (1961)Google Scholar
  3. 3.
    Ashwood-Smith, M. J.: Radioprotective and cryoprotective properties of DMSO. In: Dimethyl Sulfoxide, Vol. 1, Basic Concepts of DMSO, p. 147 (Jacob, S. W., Rosenbaum, E. E., Wood, D. C., Eds.). New York: Dekker 1971Google Scholar
  4. 4.
    Bird, R. P., Burki, H. J.: Survival of synchronized Chinese hamster cells exposed to radiation of different linear-energy transfer. Int. J. Radiat. Biol.27, 105–120 (1975)Google Scholar
  5. 5.
    Chapman, J. D., Blakely, E, A., Smith, K. C., Urtasun, R. C.: Radiobiological characterization of the inactivating events produced in mammalian cells by helium and heavy ions. Int. J. Radiat. Oncol. Biol. Phys.3, 97–102 (1977)Google Scholar
  6. 6.
    Chapman, J. D., Dugle, D. L., Reuvers, A. P., Gillespie, C. J., Borsa, J.: Chemical radiosensitization studies with mammalian cells growing in vitro. In: Radiation Research - Biomedical, Chemical and Physical Perspectives, p. 752 (Nygaard, O. F., Adler, H. I., Sinclair, W. K., Eds.). New York: Academic Press 1975Google Scholar
  7. 7.
    Chapman, J. D., Gillespie, C. J., Reuvers, A. P., Dugle, D. L.: The inactivation of Chinese hamster cells by X-rays: The effects of chemical modifiers on single- and double-events. Radiat. Res.64, 365–375 (1975)Google Scholar
  8. 8.
    Chapman, J. D., Reuvers, A. P., Borsa, J., Greenstock, C. L.: Chemical radioprotection and radiosensitization of mammalian cells growing in vitro. Radiat. Res.56, 291–306 (1973)Google Scholar
  9. 9.
    Chapman, J. D., Reuvers, A. P., Borsa, J., Petkau, A., McCalla, D. R.: Nitrofurans as radiosensitizers of hypoxic mammalian cells. Cancer Res.32, 2616–2624 (1972)Google Scholar
  10. 10.
    Chapman, J. D., Reuvers, A. P., Doern, S. D., Gillespie, C. J., Dugle, D. L.: Radiation chemical probes in the study of mammalian cell inactivation and their influence on radiobiological effectiveness. In: Proceedings of Fifth symposium on microdosimetry, p. 775 (Booz, J., Ebert, H. G., Smith, B. G. R., Eds.). Luxembourg: Commission of European Communities 1976Google Scholar
  11. 11.
    Curtis,, S. B.: Calculated LET distributions of heavy ion beams. Int. J. Radiat. Oncol. Biol. Phys.3, 87–91 (1977)Google Scholar
  12. 12.
    Dugle, D. L., Gillespie, C. J., Chapman, J. D.: DNA breaks repair, and survival in X-irradiated mammalian cells. Proc. Natl. Acad. Sci. (USA)73, 809–812 (1976)Google Scholar
  13. 13.
    Gillespie, C. J., Chapman, J. D., Reuvers, A. P., Dugle, D. L.: The inactivation of Chinese hamster cells by X-rays: Synchronized and exponential cell populations. Radiat. Res.64, 353–364 (1975)Google Scholar
  14. 14.
    Gillespie, C. J., Dugle, D. L., Chapman, J. D., Reuvers, A. P., Doern, S. D.: DNA damage and repair in relation to mammalian cell survival: Implications for microdosimetry. In: Proceedings of Fifth symposium on microdosimetry, p. 799 (Boot, J., Ebert, H. G., Smith, B. G. R., Eds.). Luxembourg: Commission of European Communities 1976Google Scholar
  15. 15.
    Kellerer, A. M., Rossi, H. H.: The theory of dual radiation action. Curr. Top. Radiat. Res.8, 85–158 (1972)Google Scholar
  16. 16.
    Manney, T. R., Brustad, T., Tobias, C. A.: Effects of glycerol and anoxia on the radiosensitivity of haploid yeasts to densely ionizing particles. Radiat. Res.18, 374–388 (1963)Google Scholar
  17. 17.
    Neary, G. J.: Chromosome aberrations and the theory of RBE (Relative Biological Effectiveness). I. General considerations. Int. J. Radiat. Biol.9, 477–502 (1965)Google Scholar
  18. 18.
    Reuvers, A. P., Greenstock, C. L., Borsa, J., Chapman, J. D.: Studies on the mechanism of chemical radioprotection by dimethyl sulphoxide. Int. J. Radiat. Biol.24, 533–536 (1973)Google Scholar
  19. 19.
    Ritter, M. A., Cleaver, J. E., Tobias, C. A.: High-LET radiations induce a large proportion of nonrejoining DNA breaks. Nature266, 653–655 (1977)Google Scholar
  20. 20.
    Takeshita, K., Sawada, S.: Lethal effects of 14-MeV fast neutrons on frog eggs and cultured mammalian cells. In: Biological effects of neutron irradiation, pp. 245–255. Vienna: I.A.E.A. 1974Google Scholar
  21. 21.
    Tobleman, W. T., Cole, A.: Repair of sublethal damage and oxygen enhancement ratio for lowvoltage electron beam irradiation. Radiat. Res.60, 355–360 (1974)Google Scholar
  22. 22.
    Todd, P.: Reversible and irreversible effects of densely ionizing radiations upon the reproductive capacity of cultured mammalian cells. Med. College Virginia Quart.1, 2–14 (1966)Google Scholar
  23. 23.
    Vos, O., Kaalen, M. C. A.: Protection of tissue-culture cells against ionizing radiation. II. The activity of hypoxia, DMSO, dimethylsulfone, glycerol, and cysteamine at room temperature and at −196° C. Int. J. Radiat. Biol.5, 609–621 (1962)Google Scholar
  24. 24.
    Ward, J. F.: Molecular mechanisms of radiation-induced damage to nucleic acids. In: Advances in Radiation Biology, Vol. 5, pp. 182–239 (Lett, J. T., Adler, H. I., Eds.). New York: Academic Press 1975Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. D. Chapman
    • 1
  • S. D. Doern
    • 1
  • A. P. Reuvers
    • 1
  • C. J. Gillespie
    • 1
  • A. Chatterjee
    • 2
  • E. A. Blakely
    • 2
  • K. C. Smith
    • 2
  • C. A. Tobias
    • 2
  1. 1.Medical Biophysics BranchAtomic Energy of Canada LtdPinawa, ManitobaCanada
  2. 2.Biomedical Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations