Advertisement

Radiation and Environmental Biophysics

, Volume 16, Issue 1, pp 1–14 | Cite as

Interaction of radiofrequency and microwave radiation with living systems

A review of mechanisms
  • Maria A. Stuchly
Article

Summary

Human health aspects and biological effects of radio frequency (RF) and microwave radiation have been in the focus of research efforts in the last decade. An understanding of the interaction mechanisms between such radiation and living systems is essential in interpreting experimental results and assessing potential health hazards.

A comprehensive review of basic biophysical interaction mechanisms between RF and microwaves in the frequency range between 10 MHz and 300 GHz and biological systems is provided in this paper. The interactions at various levels of organization of a living organisms such as molecular, cellular and macroscopic are discussed.

Keywords

Radiation Microwave Biological System Biological Effect Radio Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodge, C. H., Glaser, Z. R.: Trends in electromagnetic radiation bioeffects research and related occupational safety aspects. J. Microwave Power12, 4 (1977)Google Scholar
  2. 2.
    Michaelson, S. M.: Microwave and radiofrequency radiation. World Health Organization, Document ICP/CEP 803, 1977Google Scholar
  3. 3.
    Cleary, S. F.: Biological effects of microwave and radiofrequency radiation. CRC Crit. Rev. Environm. control8, 121–166 (1977)Google Scholar
  4. 4.
    Baranski, S., Czerski, P.: Biological effects of microwave radiation. Stroudsburg, Pa.: Dowden, Hutchinson & Ross, Inc. 1976Google Scholar
  5. 5.
    Guy, A. W., Chou, G. K., Lin, J. C., Christensen, D.: Microwave-induced effects in mammalian auditory systems and physical materials. Ann. N.Y. Acad. Sci.247, 194–218 (1975)Google Scholar
  6. 6.
    Cook, H. F.: The dielectric behavior of some types of human tissues at microwave frequencies. Br. J. Appl. Phys.2, 295 (1951)Google Scholar
  7. 7.
    Cook, H. F.: Dielectric behavior of human blood at microwave frequencies. Nature168, 247–248 (1951)Google Scholar
  8. 8.
    Cook, H. F.: A comparison of the dielectric behavior of pure water and human blood at microwave frequencies. Br. J. Appl. Phys.2, 249–255 (1952)Google Scholar
  9. 9.
    Schwan, H. P., Li, K.: Capacity and conductivity of body tissues at ultrahigh frequencies. Proc. IRE.41, 1735–1750 (1953)Google Scholar
  10. 10.
    Schwan, H. P., Piersol, G. M.: The absorption of electromagnetic energy in body tissue, Part I. Am. J. Phys. Med.33, 371–404 (1954)Google Scholar
  11. 11.
    Schwan, H. P., Piersol, G. M.: The absorption of electromagnetic energy in body tissue, Part II. Am. J. Phys. Med.34, 425–448 (1955)Google Scholar
  12. 12.
    Schwan, H. P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys.5, 147–209 (1957)Google Scholar
  13. 13.
    Schwan, H. P.: Survey of microwave absorption characteristics of body tissues. Techn. Rep. No. 25, Moore School of Electrical Eng., University of Pennsylvania, Philadelphia, 1958Google Scholar
  14. 14.
    Schwan, H. P.: Biophysics of diathermy. In: Therapeutic heat and cold. Licht, S. (ed.), pp. 63–125. New Haven, Conn.: 1965Google Scholar
  15. 15.
    Schwan, H. P., Li, K.: The mechanism of absorption of ultrahigh frequency electromagnetic energy in tissue as related to the problem of tolerance dosage. IRE Trans. Med. Electron, PG-ME-4, 1956Google Scholar
  16. 16.
    Schwan, H. P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. Lawrence, J. H., Tobias, C. A. (eds.).V, 147 (1957)Google Scholar
  17. 17.
    Schwan, H. P.: Electric characteristics of tissues, a survey. Biophysik1, 198 (1963)Google Scholar
  18. 18.
    Gandhi, O. P., Hill, D. W., Parblow, L. M., Johnson, C. C., Stensaan, L. J.: Effects of millimeter waves on living tissue. Radio Science (to be published in 1978)Google Scholar
  19. 19.
    Grant, E. H.: Measurement of the electrical properties of biological liquids at frequencies between 1 and 100 GHz. Radio Science (to be published in 1978)Google Scholar
  20. 20.
    Szwarnowski, S., Sheppard, R. J.: J. Phys. E.: Sci. Instrum.10, 1163–1173 (1977)Google Scholar
  21. 21.
    Johnson, C. C., Guy, A. W.: Non-ionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE60, 692–718 (1972)Google Scholar
  22. 22.
    Shapiro, A. R., Lutomirski, R. F., Yura, H. T.: Induced fields and heating within the cranial structure irradiated by an EM place wave. IEEE Trans. MIT-19, 187–197 (1971)Google Scholar
  23. 23.
    Anne, A., Sato, M., Salati, O. M., Schwan, H. P.: Relative microwave absorption cross sections of biological significance. In: Biological effects of microwave radiation, pp. 153–176. New York: Plenum Press 1961Google Scholar
  24. 24.
    Kritikos, H. N., Schwan, H. P.: Hot spots generated in conducting spheres by electromagnetic waves and biological implications. IEEE Trans. Biomed. Eng.19, 53–58 (1972)Google Scholar
  25. 25.
    Kritikos, H. N., Schwan, H. P.: The distribution of heating potential inside glossy spheres. IEEE Trans. Biomed. Eng.22, 457–463 (1975)Google Scholar
  26. 26.
    Kritikos, H. N., Schwan, H. P.: Formation of hot spots in multilayer spheres. IEEE Trans. Biomed. Eng.23, 168–172 (1976)Google Scholar
  27. 27.
    Neuder, S. M., Kellogg, R. B., Hill, D. H.: Microwave power density absorption in a spherical multilayered model of the head. HEW Publ. (FDA) 77-8011, 199–210 (1976)Google Scholar
  28. 28.
    Johnson, C. C., Durney, C. H., Massoudi, H.: Long-wavelength electromagnetic power absorption in prolate spherical model of man and animals. IEEE Trans. MIT-23, 739–747 (1975)Google Scholar
  29. 29.
    Durney, C. H., Johnson, C. C., Massoudi, H.: Long-wave length analysis of plane wave irradiation of a prolate spheroid model of man. IEEE Trans. MIT-23, 246–253 (1975)Google Scholar
  30. 30.
    Massoudi, H., Durney, C. H., Johnson, C. C., Allen, S.: Theoretical calculations of power absorbed by monkey and human prolate spheroidal phantoms in an irradiation chamber. HEW Publ. (FDA) 77-8011, 135–157 (1976)Google Scholar
  31. 31.
    Barber, P. W.: Numerical study of electromagnetic power deposition in biological tissue bodies. HEW Publ. (FDA) 77-8011, 119–134 (1977)Google Scholar
  32. 32.
    Massoudi, H., Durney, C. H., Johnson, C. C.: Long-wave analysis of plan wave irradiation of an ellipsoidal model of man. IEEE Trans. on Microwave Theory and Techn. MIT-25, 41–46 (1977)Google Scholar
  33. 33.
    Massoudi, H., Durney, C. H., Johnson, C. C.: Long-wave length electromagnetic power absorption in ellipsoidal models of man and animals. IEEE Trans. MIT-25, 47–52 (1977)Google Scholar
  34. 34.
    Johnson, C. C., Durney, C. H., Barber, P. W., Massoudi, H., Allen, S. J., Mitchell, J. C.: Radiofrequency radiation dosimetry handbook. U.S.A.F. School of Aerospace Medicine, Brooks Air Force Base, Report SAM-TR-76-35. Sept 1976Google Scholar
  35. 35.
    Gandhi, O. P.: Polarization of frequency effects on whole animal absorption of RF energy. Proc. IEEE,62, 1171–1175 (1974)Google Scholar
  36. 36.
    Allen, S. J., Hurt, W. D., Krupp, J. H., Ratliff, J. A., Durney, C. H., Johnson, C. C.: Measurement of radiofrequency power absorption in monkeys, monkey phantoms and human phantoms exposed to 10–50MHz fields. HEW Publ. (FDA) 77-8011, 83–95 (1976)Google Scholar
  37. 37.
    Guy, A. W.: Biophysical characteristics of electromagnetic fields. Problems of Dosimetry Neuroscience Research Program Bulletin 15.1, 81–88 (1977)Google Scholar
  38. 38.
    Gandhi, O. P., Hagmann, M. J., D'Andres, J. A.: Some recent results on deposition of electromagnetic energy in animals and models of man. Presented at the 1977 International Symp. on Biological Effects of Electromagnetic Waves. Nov. 1977 (to be published in Radio Science, 1978)Google Scholar
  39. 39.
    Durney, C. H., Johnson, C. C., Barber, P. W., Massoudi, H., Iskander, M. F., Lords, J. L., Ryser, D. K., Allen, S. J., Mitchell, J. C.: Radiofrequency radiation handbook, second Ed., Report SAM-TR-78-22, U.S.A.F. School of Aerospace Medicine, Brooks Air Base, Texas 78235Google Scholar
  40. 40.
    Salati, O. M., Anne, S., Schwan, H. P.: Radiofrequency radiation hazards. In: Electronic Industries, pp. 96–101. Nov. 1962Google Scholar
  41. 41.
    Guy, A. W., Webb, M. D., Sorensen, C. C.: Determination of power absorption in man exposed to high frequency electromagnetic fields by thermographic measurements on scale models. IEEE Trans. Biomed. Eng.23, 361–371 (1976)Google Scholar
  42. 42.
    Wu, C. L., Lin, J. C.: The distribution of induced electromagnetic field inside glossy prolate head models in the resonance region. IEEE Trans. Biomed. Eng.25, 1978 (in press)Google Scholar
  43. 43.
    Guy, Q. W., Webb, M. D., McDougall, J. S.: RF radiation absorption patterns: Human and animal modelling data. DHEW (NIOSH) Publ. No. 77–183 (1977)Google Scholar
  44. 44.
    Emery, A. F., Short, R. E., Guy, A. W., Kraning, K. K., Lin, J. C.: The numerical thermal simulation of the body when absorbing non-ionizing microwave irradiation with emphasis on the effect of different sweat models. HEW Publ. (FDA) 78-8011, 96–118 (1976)Google Scholar
  45. 45.
    Lebovitz, R. M., Seaman, R. L.: Single auditory responses to weak pulsed microwave radiation. Brain Res.126, 370–375 (1977)Google Scholar
  46. 46.
    Lin, J. C.: Microwave auditory effects and applications. Springfield, Ill.: Charles C. Thomas 1978Google Scholar
  47. 47.
    Lin, J. C.: On microwave-induced hearing sensation. IEEE Trans. MIT-25, 605–613 (1977)Google Scholar
  48. 48.
    Böttcher, C. J. F., Van Belle, O. C., Bordwijk, P., Rip, A.: Theory of electric polarization, Vol I. Amsterdam: Elsevier Publ. Co. 1973; and Böttcher, C. J. F., Bordwijk, P.: Theory of electric polarization, Vol. II. Amsterdam: Elsevier Publ. Co. 1978Google Scholar
  49. 49.
    Illinger, K. H.: Molecular mechanisms for microwave absorption in biological systems. Symp. Proc. BRH/DBE 70-2, Richmond, Virginia. pp. 112–116, Sept. 1969Google Scholar
  50. 50.
    Grant, E. H., Sheppard, R. J., South, G. P.: Dielectric behavior of biological molecules in solution. Oxford Press 1978Google Scholar
  51. 51.
    Rabinowitz, J. R.: Possible mechanisms for the biomolecular absorption of microwave radiation with functional implications. IEEE Trans. MIT-21, 850–851 (1973)Google Scholar
  52. 52.
    Hazlewood, C. F.: Bound water in biology, Acta Biochim. Biophys. Acad. Sci. Hung.12, 263–273 (1977)Google Scholar
  53. 53.
    Schwan, H. P.: Principles of interaction of microwave at cellular and molecular level. Proc. Int. Symp. Warsaw. pp. 152–159, October 1973Google Scholar
  54. 54.
    Takashima, S., Minakata, A.: Dielectric behavior of biological macromolecules. digest dielectric literature37, 602–653 (1973)Google Scholar
  55. 55.
    Grant, E. H.: Privat communication 1978Google Scholar
  56. 56.
    Oncley, J. L.: The investigation of proteins by dielectric measurements. Chem. Rev.30, 443–450 (1942)Google Scholar
  57. 57.
    Fröhlich, H.: Evidence for bose condensation-like excitation of coherent modes in biological systems. Physics Letters51A, 21–22 (1975)Google Scholar
  58. 58.
    Schwan, H. P.: Alternating current spectroscopy of biological substances. Proc. IRE47, 1841–1855 (1959)Google Scholar
  59. 59.
    Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952)Google Scholar
  60. 60.
    Schwan, H. P.: Non-ionizing radiation hazards. J. Franklin Institute296, 485–497 (1973)Google Scholar
  61. 61.
    Barnes, F. S., Hu, C. J.: Model for some nonthermal effects of radio and microwave fields on biological membranes. IEEE Trans. MIT-25, 742–745 (1977)Google Scholar
  62. 62.
    Pickand, W. F., Rosenbaum, F. J.: Biological effects of microwaves at the membrane level: Two possible athermal electrophysiological mechanisms and a proposed experimental test. Mathematical Biosciences39, 235–272 (1978)Google Scholar
  63. 63.
    Bawin, S. M., Medici, R. J., Adey, W. R.: Effects of modulatedVHF fields on the central nervous system. Ann. N.Y. Acad. Sci.247, 74–80 (1975)Google Scholar
  64. 64.
    Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Elchinger, D. C.: Two parameters affecting radiation indced calcium efflux from brain tissue. 1977 Symposium on Biological Effects of Electromagnetic waves, Airlie, Virginia, 30 Oct.–4. Nov. 1977Google Scholar
  65. 65.
    Adey, W. R.: Introduction: Effects of elecromagnetic radiation on the nervous system. Ann. N.Y. Acad. Sci.247, 15–20 (1975)Google Scholar
  66. 66.
    Schwan, H. P.: Microwave radiation: Biophysical considerations and standard criteria. IEEE BME-19, 302–312 (1972)Google Scholar
  67. 67.
    Schwan, H. P., Sher, I. D.: Alternating current field-induced forces and their biological implications. J. Electrochem. Society116, 22C-26C (1969)Google Scholar
  68. 68.
    Schwan, H. P.: Interaction of microwave and radiofrequency radiation with biological systems. IEEE Trans. MIT-19, 146–152, (1971)Google Scholar
  69. 69.
    Presman, A. S.: Electromagnetic fields and life. Tzdatelstvo Nauka, Moscow, 1968. Transl. New York: Plenum PressGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Maria A. Stuchly
    • 1
  1. 1.Nonionizing Radiation Section, Radiation Protection BureauEnvironmental Health Centre, Health and WelfareOttawa, OntarioCanada

Personalised recommendations