Skip to main content
Log in

Modifikation der UV-Strahlenwirkung auf Pinus-Pollen durch isolierte Zellinhaltsstoffe

Beziehung zur Strahlenstimulation

Modification of the effect of UV irradiation on pine pollen by isolated cell constituents

Relation to Radiation Stimulation

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

The effect of UV-irradiation on the growth of pine pollen tubes can be modified by isolated fractions of cell extracts, especially by a fraction containing the cell wall material.

Cell extracts irradiated with high UV-doses also stimulate the tube growth of unirradiated pollen grains.

RNA, flavonoles and high-energy compounds (ATP, GTP and UTP) did not show any effect concerning tube growth stimulation.

Some amino acids modified the tube growth of unirradiated pollen grains, while hydroxyproline, threonine, alanine, glutamic acid, proline and valine stimulated the tube growth. Cysteine, histidine, lysine, tryptophan and glutamine inhibit it.

UV irradiation of the basic amino acids (i.e. lysine, arginine and histidine) increased, whereas irradiation of cysteine, glycine, tyrosine and isoleucine additionally decreased the tube growth.

Zusammenfassung

Die Wirkung von UV-Strahlen auf das Schlauchwachstum von Pinus-Pollen kann durch isolierte Inhaltsstoffe modifiziert werden. Insbesondere zeigen zellwandreiche Fraktionen eine reproduzierbare schlauchwachstumsfördernde Wirkung auf bestrahlte Pollen.

Mit höheren UV-Dosen bestrahlte Pollen-Inhaltsstoffe wirken bei Zugabe zu unbestrahlten Testpollen stimulierend.

RNA und Flavonole sowie energiereiche Verbindungen wie ATP, GTP, UTP geben keinen Hinweis auf die für die Stimulation verantwortlichen Komponenten im Pollen.

Aminosäuren beeinflussen das Schlauchwachstum unbestrahlter Pollen. Während es durch Hydroxyprolin, Threonin, Alanin, Glutaminsäure, Prolin und Valin gefördert wird, wirken Cystein, Histidin, Lysin, Tryptophan und Glutamin hemmend. Bestrahlte basische Aminosäuren wie Lysin, Arginin und Histidin stimulieren das Schlauchwachstum unbestrahlter Pollen, während Glycin, Glutamin, Tyrosin, Cystein und Isoleucin nach Bestrahlung hemmend wirken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Bacq, Z. M., Alexander, P.: Fundamentals of radiobiology, 2nd ed. Oxford: Pergamon Press 1963

    Google Scholar 

  2. Beatty, V. A., Beatty, J. W.: Metabolic repair of radiation-induced chromosome damage. Rad. Bot.2, 65–69 (1962)

    Google Scholar 

  3. Christoffers, D., Kaul, A. K., Georgi, B.: A preliminary report on the determination of lysine content in grain meal samples with dansylation. Genetica (in press)

  4. Casarett, A. P.: Radiation biology. Engelwood Cliffs, N.J.: Prentice Hall Inc. 1968

    Google Scholar 

  5. Feldmann, A.: Beiträge zur Strahlenstimulation. III. Einfluß der Temperatur auf die strahleninduzierte Wachsfrumsförderung beiLemna minor L. Rad. Bot.11, 59–65 (1971)

    Google Scholar 

  6. Fendrik, I., Zelles, L.: The stimulating effect of x- andγ-rays on the growth of pollen tube ofPinus silvestris. Stimulation Newsletter3, 20–21 (1971)

    Google Scholar 

  7. Glubrecht, H., Scheuermann, W.: Strahlenwirkung ionisierender Strahlen. Fortschr. Bot.30, 150–168 (1968)

    Google Scholar 

  8. Hanawalt, P. C.: Reparatur genetischen Materials in lebenden Zellen. Endeavour113, 83–87 (1972)

    Google Scholar 

  9. Heslop-Harrison, J., Heslop-Harrison, Y., Knox, R. B., Hewlett, B.: Pollen-wall proteins: Gametophytic and sporophytic fractions in the pollen walls of the malvaceae. Ann. Botany37, 405–412 (1973)

    Google Scholar 

  10. Hollaender, A., Stapleton, B.: Modification of radiation damage after exposure to X-rays. Brit. J. Radiol.27, 117–121 (1954)

    Google Scholar 

  11. Hollaender, A., Kimball, R. F.: Modification of radiation induced genetic damage. Nature (Loud.)117, 726–730 (1956)

    Google Scholar 

  12. Jagger, J.: Introduction to research in ultraviolet photobiology, pp. 99–125. Engelwood Cliffs, N.J.: Prentice Hall, Inc. 1967

    Google Scholar 

  13. Keiding, J., Westergaard, O.: Induction of DNA polymerase activity in irradiatedtetra-hymena cells. Exp. Cell Res.64, 317–322 (1971)

    Google Scholar 

  14. Klein, R. M., Klein, D. T.: Post irradiation modulation of ionising radiation damage to plants. Bot. Rev.37, 397–436 (1971)

    Google Scholar 

  15. Knox, R. B., Heslop-Harrison, J.: Pollen wall proteins: Localisation and enzymic activity. J. Cell Sci.6, 1–27 (1970)

    Google Scholar 

  16. Linskens, H. F.: Isolation of ribosomes from pollen. Planta (Berl.)73, 194–200 (1967)

    Google Scholar 

  17. Livingstone, G. H., Stettler, R. F.: Radiation induced stimulation of pollen tubes elongation in Douglas fire. Rad. Bot.13, 65–72 (1973)

    Google Scholar 

  18. Lucnik, W. V.: The effect of yeast extracts on the mortality of irradiated rice and pea seed. Zit. nach (14)

  19. Mandell, J. D., Hershey, A. D.: A fractionating column for analysis of nucleic acids. Analyt. Biochem.1, 66–77 (1970)

    Google Scholar 

  20. Murphy, M., Kuhn, D. W., Murphy, J. B.: Ultraviolett irradiation of components of the wheat embryo in vitro protein synthesizing system. Biochem.12, 1782–1788 (1973)

    Google Scholar 

  21. Nygaard, P.: Nucleotide metabolism during pine pollen germination. Physiol. Plantarum28, 361–371 (1973)

    Google Scholar 

  22. Orszaghova, V., Rumiel, M., Vergieva, V.: Einfluß verschiedener Glukosekonzentrationen auf das Überleben der osmophilen Hefepilze nach UV-Bestrahlung. Studia biophysica9, 179–187 (1962)

    Google Scholar 

  23. Ogawa, M., Uritani, J.: Metabolic changes in sweet potato roots induced by gamma radiation in response to cutting. Radiat. Res.39, 117–125 (1969)

    Google Scholar 

  24. Rase, S., Sattler, E. L.: Indirekter Effekt durch UV-Bestrahlung. Studia biophysica18, 79–86 (1969)

    Google Scholar 

  25. Riov, J., Monesliese, S. P., Goven, N., Kahan, R. S.: Stimulation of phenolic biosyntheis in citrus fruit peel by gamma radiation. Rad. Res. Rev.3, 417–427 (1972)

    Google Scholar 

  26. Rostschupkin, D. J.: Über die Natur der bei UV-Bestrahlung von Proteinen und aromatischen Aminosäuren gebildete Radikale. Studia biophysica9, 147–153 (1968)

    Google Scholar 

  27. Saito, W., Werbin, H.: Actinospectrum for a DNA photoreactivating enzyme isolated from higher plants. Rad. Bot.9, 420–424 (1969)

    Google Scholar 

  28. SedliakoVa, M.: Influence of physiological factors on the resistance to ultraviolet radiation in bacteria. Studia biophysica36/37, 59–66 (1973)

    Google Scholar 

  29. Sidrak, G. H., Suess, A.: Effects of low doses of gamma radiation on the growth and yield of two varieties of tomato. Rad. Bot.13, 309–314 (1973)

    Google Scholar 

  30. Sommer, N. F., Creasy, M., Romani, R. J., Maxie, E. C.: An oxigen dependent post-irradiation. Restoration ofRhisopus stolanifer Sporangiospores. Radiat. Res.22, 21–28 (1964)

    Google Scholar 

  31. Sproston, T.: An actinospectrum for ultraviolet induced sporulation in the fungusStemphylium solani Weber. Photochem. Photobiol.14, 571–576 (1971)

    Google Scholar 

  32. Strähler, F., König, K.: Metabolic change in amino acids and proteins after in vitro irradiation of the isolated perfused rat liver. Studia biophysica18, 159–164 (1969)

    Google Scholar 

  33. Stanley, R. G., Linskens, H. F.: Protein diffusion from germinating pollen. Physiol. Plantarum18, 48–53 (1965)

    Google Scholar 

  34. Stone, B. P., Cherry, J. H.: Induced production of invertase in sugar-beet root by gamma irradiation. Role of DNA. Planta (Berl.) 179–189 (1972)

  35. Sudoh, K., Noda, H.: UV-irradiation of collagen and its effect on fibril reconstitution. Conn. Tiss. Res.1, 267–274 (1971)

    Google Scholar 

  36. Tano, S., Takahashi, H.: Nucleic acid synthesis in germinating pollen tubes. J. Biochem.56, 578–580 (1964)

    Google Scholar 

  37. Taranova, E. A.: Change in the viability of pollen as influenced by the environment and gamma irradiation. Zit. nach (14)

  38. Zelles, L.: Ein Modell für die UV-Stimulation des Pollenschlauchwachstums vonPinus silvestris. Biophysik9, 142–154 (1973)

    Google Scholar 

  39. Zelles, L.: Der Einfluß von Antibiotika auf die UV-Stimulation des Pollenschlauchwachstums vonPinus silvestris. Biophysik9, 132–141 (1973)

    Google Scholar 

  40. Zelles, L., Ernst, D.: The stimulation of pollen tube formation ofPinus silvestris by ultraviolet light. Biophysik9, 357–363 (1973)

    Google Scholar 

  41. Zelles, L.: Untersuchungen über den Farbstoffgehalt der Schale von Äpfeln und Birnen während der Vegetationsperiode und unter verschiedenen Lagerbedingungen. Dissertation, Bonn 1967

Download references

Author information

Authors and Affiliations

Authors

Additional information

Eingegangen am 2. Mai 1974

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelles, L., Ernst, D. Modifikation der UV-Strahlenwirkung auf Pinus-Pollen durch isolierte Zellinhaltsstoffe. Radiat Environ Biophys 11, 271–280 (1975). https://doi.org/10.1007/BF01326749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01326749

Keywords

Navigation