Skip to main content
Log in

Shuttle-like movements of Golgi vesicles in the tip of growingChara rhizoids

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In tip-growingChara rhizoids, the in-vivo saltatory movements of Golgi vesicles were recorded. The movements in radial direction back and forth between the ER aggregate and the plasma membrane occurred three times more often than movements passing the ER aggregate tangentially. The mean velocity of the class of Golgi vesicles observed (0.4–1 μm in diameter) was approx. 0.3 μm/s. Higher speed of 1–1.5 μm/s occurred only in radial directions. Possibly, the ER aggregate is involved in guidance of the Golgi vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DIC:

differential interference contrast

ER:

endoplasmic reticulum

OsFeCN:

osmium tetroxide-potassium ferricyanide

References

  • Bartnik E, Sievers A (1988) In-vivo observations of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growingChara rhizoids. Planta 176: 1–9

    Google Scholar 

  • Dabora SL, Sheetz MP (1988) The microtubule-dependent formation of tubulovesicular network with characteristics of the ER from cultures cell extracts. Cell 54: 27–36

    Google Scholar 

  • Foissner I (1990) Wall appositions induced by ionophore A 23187, CaCl2, LaCl3, and nifedipine in characean cells. Protoplasma 154: 80–90

    Google Scholar 

  • Franceschi VR, Lucas WJ (1981) The glycosomes ofChara: ultrastructure, development and composition. J Ultrastruct Res 75: 218–228

    Google Scholar 

  • Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48: 250–263

    Google Scholar 

  • Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48: 89–103

    Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106: 1545–1552

    Google Scholar 

  • Kreis TE, Allan VJ, Matteoni R, Ho WC (1988) Interaction of elements of the Golgi apparatus with microtubules. Protoplasma 145: 153–159

    Google Scholar 

  • Kreis TE, Matteoni R, Hollinshead M, Tooze J (1989) Secretory granules and endosomes show saltatory movement biased to the anterograde and retrograde directions, respectively, along microtubules in AtT20 cells. Eur J Cell Biol 49: 128–139

    Google Scholar 

  • Lee C, Chen LB (1988) Dynamic behavior of endoplasmic reticulum in living cells. Cell 54: 37–46

    Google Scholar 

  • Phillips GD, Preshaw C, Steer MW (1988) Dictyosome vesicle production and plasma membrane turnover in auxin-stimulated outer epidermal cells of coleoptile segments fromAvenu sativa (L.). Protoplasma 145: 59–65

    Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes ofTradescantia using cytochalasin D. J Cell Sci 49: 261–271

    Google Scholar 

  • — — (1982) A model for the mechanism of tip extension in pollen tubes. J Theor Biol 98: 15–20

    Google Scholar 

  • — — (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    Google Scholar 

  • Quader H, Hofmann A, Schnepf E (1987) Shape and movement of the endoplasmic reticulum in onion bulb epidermis cells: possible involvement of actin. Eur J Cell Biol 44: 17–26

    Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Google Scholar 

  • —, Hausmann K, Herth W (1982) The osmium tetroxide-potassium ferrocyanide (OsFeCN) staining technique for electron microscopy: a critical evaluation using ciliates, algae, mosses, and higher plants. Histochemistry 76: 261–271

    Google Scholar 

  • Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by ATP, Mg2+ and cytochalasin B in permeabilizedCharaceae cell. Protoplasma 115: 18–24

    Google Scholar 

  • Sievers A (1965) Elektronenoptische Untersuchungen zur geotropischen Reaktion: I. Besonderheiten im Feinbau der Rhizoide vonChara foetida. Z Pflanzenphysiol 53: 193–213

    Google Scholar 

  • —, Schnepf E (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 265–299 [Alfert M etal (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • —, Schröter K (1971) Versuch einer Kausalanalyse der geotropischen Reaktionskette imChara Rhizoid. Planta 96: 339–353

    Google Scholar 

  • —, Kruse S, Kuo-Huang LL, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179: 275–278

    Google Scholar 

  • Steer WM, Steer JM (1989) Pollen tube growth. New Phytol 111: 323–338

    Google Scholar 

  • Van der Woude WJ, Morré DJ (1968) Endoplasmic reticulum-dictyosome-secretory vesicle associations in pollen tubes ofLilium longiflorum Thunb. Proc Indian Acad Sci 77: 164–170

    Google Scholar 

  • Wendt M, Sievers A (1986) Restitution of polarity in statocytes from centrifuged roots. Plant Cell Environ 9: 17–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor O. Kiermayer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartnik, E., Hejnowicz, Z. & Sievers, A. Shuttle-like movements of Golgi vesicles in the tip of growingChara rhizoids. Protoplasma 159, 1–8 (1990). https://doi.org/10.1007/BF01326629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01326629

Keywords

Navigation