Skip to main content
Log in

Magnetism of surfaces by spin polarized photoemission

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Spin polarized photoemission is used as a method to study the magnetic peoperties of solid surfaces. Here we consider those systems where the spin polarization is believed to be conserved during the photoemission process. The surface sensitivity of the experiment will be therefore mainly determined by the relative magnitudes of the escape depth of the photoelectrons and of the magnetic coherence lengthξ. We analyze both the temperature and magnetic-field dependence of the degree of spin polarizationP of the electrons emitted from single crystals of magnetite, Fe3O4, and thin films (D=2–3000 Å) of Fe, Co and Ni. These data yield information on 1) the temperature dependence of the magnetization of the surface, 2) the relative sizes ofξ and, 3) changes of the magnetic moment of atoms in the surface layers, and 4) the surface magnetic anisotropy. We show that this technique emerges as a novel tool to study magnetic systems with free surfaces and to test the predictions of recent calculations of the magnetic properties of surfaces. Emphasis is given to the fact that only relative changes ofP and not its absolute values are relevant for an analysis of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sattler, K., Siegmann, H.C.: Phys. Rev. Lett.29, 1565 (1972) see also: Campagna, M., Sattler, K., Siegmann, H.C.: AIP Conf. Proc. 18/2, 1388 (1974); Helv. Phys. Acta 47/1, 27 (1974)

    Google Scholar 

  2. Gradmann, U.: Appl Phys.3, 161 (1974) and references cited therein

    Google Scholar 

  3. Galeczki, G., Hirsch, A.A.: J. of Magnetism and Mag. Mat.3, 309 (1976)

    Google Scholar 

  4. Bergmann, G.: to be published

  5. Blum, J.K., Göpel, W.: Thin Solid Films42, 7 (1977)

    Google Scholar 

  6. Berkowitz, A.E., Lahut, J.A., Jacobs, I.S., Levinson, L.M., Forrester, D.W.: Phys. Rev. Lett.34, 594 (1975)

    Google Scholar 

  7. Alvarado, S.F., Eib, W., Meier, F., Siegmann, H.C., Zürcher, P.: Photoemission and the Electronic Properties of Surfaces, Feuerbacher, B., Fitton, B., Willis, R.F., (eds.), p. 437. London: John Wiley and Sons Ltd 1978

    Google Scholar 

  8. Bänninger, U., Busch, G., Campagna, M., Siegmann, H.C.: Phys. Rev. Lett.25, 585 (1970)

    Google Scholar 

  9. Busch, G., Campagna, M., Siegmann, H.C.: Phys. Rev. B4, 746 (1971)

    Google Scholar 

  10. Alder, H., Campagna, M., Siegmann, H.C.: Phys. Rev. B8, 2075 (1973)

    Google Scholar 

  11. Binder, K., Hohenberg, P.C.: IEEE Transaction on Magnetics Vol. MAG-12, No. 2, p. 66 (1976)

    Google Scholar 

  12. The correction factor was unwillingly omitted in a previous report on the temperature dependence results on Fe3O4. See J. of Mag. Mat.7, 16–17 (1978). I am very grateful to K. Binder for calling my attention on this point

  13. Eastman, D.E. In: Techniques of Metals Research VI, Passaglia, E. (ed.). New York: Interscience 1972

    Google Scholar 

  14. Alvarado, S.F., Erbudak, M., Munz, P.: Phys. Rev. B14, 2740 (1976)

    Google Scholar 

  15. Schlegel, A., Alvarado, S.F., Wachter, P.: to be published

  16. Balberg, I., Pankove, J.I.: Phys. Rev. Lett.27, 1371 (1971)

    Google Scholar 

  17. Camphausen, D.L., Coey, J.M.D., Chakraverty, B.K.: Phys. Rev. Lett.29, 695 (1972)

    Google Scholar 

  18. Pauthenet, R.: Ann. Phys. Paris7, 710 (1952)

    Google Scholar 

  19. Mills, D.L., Maradudin, A.A.: J. Phys. Chem. Sol.28, (1967)

  20. Wolfram, T., DeWames, R.E., Hall, W.F., Palmberg, P.W.: Surface Sci.28, 45 (1971)

    Google Scholar 

  21. Takeda, T., Fukuyama, H.: J. Phys. Soc. Japan40, 925 (1976)

    Google Scholar 

  22. Steinsvoll, O., Mustoe, F., Corliss, L.M., Hastings, J.M.: Phys. Rev. B14, 4190 (1976)

    Google Scholar 

  23. Imamura, N., Mimura, Y., Kobayashi, T.: IEEE Transactions on Magnetics Vol. MAG-12, No. 2, p. 66 (1976)

    Google Scholar 

  24. Koepke, R., Bergmann, G.: Z. Physik B21, 185 (1975)

    Google Scholar 

  25. Néel, M.L.: J. Phys. Radium15, 225 (1954)

    Google Scholar 

  26. Eib, W., Reihl, B.: Phys. Rev. Lett.40, 1674 (1978)

    Google Scholar 

  27. Eib, W., Alvarado, S.F.: Phys. Rev. Lett.37, 444 (1976)

    Google Scholar 

  28. Landolt, M., Campagna, M.: Phys. Rev. Lett.39, 568 (1977) and Surf. Sci.70, 197 (1978)

    Google Scholar 

  29. Valid for cubic crystals where (100) is the preferred direction. If (111) is preferred, like in the case of magnetite at room temperature, thenH k=−(4/9) (3K 1 +K 2/M 0)

  30. Cohen, M.S.: Chapter 17 of “Handbook of Thin Film Technology”. Maisel, L.I., Glang, R. (eds.). New York: McGraw Hill 1970, see Ref. 2 also

    Google Scholar 

  31. Herpin, A.: Theorie du Magnétisme, Bibliothèque des Sciences et Techniques Nucléaires 1968, p. 831–841

  32. Wohlfarth, E.P.: Selected Topics in Solid State Physics Vol. IX, No. 2, p. 184 (1967)

    Google Scholar 

  33. Abe, K., Miyamoto, Y., Chikazomi, S.: J. Phys. Jap. (Japan)41, 1894 (1976)

    Google Scholar 

  34. Here a correction factor of √2 has been induced as required whenH ≃ H K as shown in Ref. 24. See also Holstein, T., Primakoff, H.: Phys. Rev.59, 388 (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, S.F. Magnetism of surfaces by spin polarized photoemission. Z Physik B 33, 51–60 (1979). https://doi.org/10.1007/BF01325813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01325813

Keywords

Navigation