Radiation and Environmental Biophysics

, Volume 14, Issue 4, pp 323–328 | Cite as

Effects of antibiotics on UV-stimulated tube growth ofPinus silvestris pollen

  • L. Zelles
Short Communication


Studies were made to investigate the effects of different antibiotics on unirradiated pollen and on pollen with enhanced tube growth, stimulated by low doses of UV-light. The antibiotics mitomycin, chloramphenicol, tetracyclin, penicillin, nystatin and carbony-cyanid phenylhydrazon were not able to suppress tube growth stimulation of pine pollen. The data obtained are discussed in view of the stimulation mechanism of low doses of UV-light.


Penicillin Chloramphenicol Environmental Physic Mitomycin Tube Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armentrout, S. A., Weissberger, A. S.: Inhibition of directed protein synthesis by chloramphenicol. Effect of magnesium concentration. Biochem. biophys. Res. Commun.26, 712–715 (1967)Google Scholar
  2. 2.
    Bryla, J., Kaninga, Z.: On the binding of actinomycin to the respiratory chain. Biochim. biophys. Acta (Amst.)153, 910–913 (1968)Google Scholar
  3. 3.
    Calendi, E., Di Marco, A., Scaprinato, R., Valentini, L.: Physico-chemical interactions between daunomycin and nucleic acids. Biochim. biophys. Acta (Amst.)103, 25–49 (1965)Google Scholar
  4. 4.
    Cundlife, E., McQuillen, K.: Bacterial protein synthesis: the effect of antibiotics. J. molec. Biol.30, 137–146 (1967)Google Scholar
  5. 5.
    Davies, J., Jones, D. S., Khoran, H. G.: A further study of misreading of codons induced by streptomycin and neumycin using ribopolynucleotides sequence as template. J. molec. Biol.18, 48–57 (1966)Google Scholar
  6. 6.
    Franklin, T. J., Snow, G. A.: Biochemie antimicrobieller Wirkstoffe, pp. 51–142. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  7. 7.
    Godchaux, W., Adamson, S. D., Herbert, E.: Effect of cycloheximide on polyribosome function in reticulocytes. J. molec. Biol.27, 57–72 (1967)Google Scholar
  8. 8.
    Heytler, P. G., Prichard, W. W.: A new class of uncoupling agents. Carbonyl-cyanide-phenylhydrazones. Biochem. biophys. Res. Commun.7, 272–275 (1962)Google Scholar
  9. 9.
    Iyer, V. N., Szybalsky, W.: Molecular mechanism of mytomicin action: linking of complimentary DNA strands. Microbiol.50, 355–362 (1963)Google Scholar
  10. 10.
    Jacson, F. L., Lightbown, J. W.: Inhibition of dihydrocozymase-oxydase activity of heart-muscle preparation and of certain cell-free bacterial preparation by 2-heptyl-4-hydroquinoline-n-oxyde. Biochem.69, 1957–1967 (1958)Google Scholar
  11. 11.
    Lightbown, J. W., Jacson, F. L.: Inhibition of cytochrom systems of heart-muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline-n-oxydes. Biochem.63, 130–137 (1956)Google Scholar
  12. 12.
    Malik, C. P., Singh, M. B.: Fluctuations in dehydrogenase activities during the development of pollen tube ofCalotropis procera. Biochem. Physiol. Pflanzen169, 583–588 (1976)Google Scholar
  13. 13.
    Mascarenhas, J. P.: Pollen tube growth and RNA synthesis by vegetative and generative nuclei ofTradescantia. Amer. J. Bot.53, 563–569 (1966)Google Scholar
  14. 14.
    Mascarenhas, J. P.: The biochemistry of angisperm pollen development. Bot. Rev.41, 253–314 (1975)Google Scholar
  15. 15.
    Morris, A., Arlinghous, R., Favelukes, S., Schweel, R.: Inhibition of hemoglobine synthesis by puromycin. Biochem.2, 1084–1090 (1963)Google Scholar
  16. 16.
    Pedrini, A. M., Geroldi, D., Siccardi, A., Falachi, A.: Studies on the mode of action of nalidixine acid. Europ. J. Biochem.25, 359–365 (1972)Google Scholar
  17. 17.
    Staehlin, T., Meselson, M.: Determination of streptomycin sensitivity by a subunit of the 30S ribosome ofE. coli. J. molec. Biol.19, 207–210 (1966)Google Scholar
  18. 18.
    Stockert, J. C., Lisanti, A.: Acridinorange differential fluorescence of fast- and slow-reassociating chromosomal DNA after in situ DNA denaturation and reassociation. Chromosoma (Berl.)37, 117–130 (1972)Google Scholar
  19. 19.
    Zelles, L.: Einfluß von Antibiotika auf die UV-Stimulation des Pollenschlauchwachstums vonPinus silvestris. Biophysik9, 132–141 (1973)Google Scholar
  20. 20.
    Zelles, L., Seibold, H. W.: Radiation induced pollen tube growth stimulation ofPinus silvestris. Effect of quantum energy and dose rates. Environm. exp. Bot.16, 15–22 (1976)Google Scholar
  21. 21.
    Young, L. C. T., Stanley, R. G.: Incorporation of tritiated nucleosides thymidine, uridine and cytidine in nuclei of germinating pine pollen. The nucleus6, 83–90 (1963)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • L. Zelles
    • 1
  1. 1.Institut für Strahlenbotanik der GSFHannoverGermany

Personalised recommendations