Personal Technologies

, Volume 4, Issue 2–3, pp 144–154 | Cite as

Spatial audio in small screen device displays

  • Ashely WalkerEmail author
  • Steven Brewster


Our work addresses the problem of (visual) clutter in mobile device interfaces. The solution we propose involves the translation of technique-from the graphical to the audio domain-for expliting space in information representation. This article presents an illustrative example in the form of a spatialisedaudio progress bar. In usability tests, participants performed background monitoring tasks significantly more accurately using this spatialised audio (a compared with a conventional visual) progress bar. Moreover, their performance in a simultaneously running, visually demanding foreground task was significantly improved in the eye-free monitoring condition. These results have important implications for the design of multi-tasking interfaces for mobile devices.


3D audio Delay affordance Interface design Usability testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen J. Auditory Display: sonification, audification and auditory interfaces. Addison-Wesley, 1994;499–531Google Scholar
  2. 2.
    Wireless application protocol-white paper. Wireless Internet Today, October 1999Google Scholar
  3. 3.
    Arons B. A review of the cocktail party effect. J. Am. Voice I/O Soc. 1992; 12: 35–50Google Scholar
  4. 4.
    Gaver WW. Technology affordances. In: Proceedings CHI'91. ACM Press Addison-Wesley, 1991; 79–84Google Scholar
  5. 5.
    Gaver WW, Moran T, MacLean A, Lovstrand L, Dourish P, Carter K, Buxton W. Realizing a video environment: Europarc's RAVE system. In: Proceedings CHI'92, 1992; 27–35Google Scholar
  6. 6.
    Mynatt ED, Back M, Want R, Baer M, Ellis JB. Designing audio aura. In: Proceedings CHI'98. ACM Press Addison Wesley, 1998; 566–573Google Scholar
  7. 7.
    Ishii H, Ullmer B. Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings CHI'97. ACM Press Addison-Wesley, 1997; 234–241Google Scholar
  8. 8.
    Sawhney N, Schmandt C. Nomadic radio: scalable and contextual notification for wearable messaging. In: Proceedings CHI'99. ACM Press, Addison-Wesley, 1999; 96–103Google Scholar
  9. 9.
    Wenzel EM. Localization in virtual acoustic displays. Presence 1992; 1: 80–107Google Scholar
  10. 10.
    Seligmann DD, Mercuri RT, Edmark JT. Providing assurances in a multimedia interactive environment. In: Proceedings CHI'95. ACM Press Addison-Wesley, 1995; 250–256Google Scholar
  11. 11.
    Cohen M, Ludwig FL. Multidimensional audio window management. Int. J. Man-Machine Studies 1991; 34: 319–336Google Scholar
  12. 12.
    Kobayashi M, Schmandt C. Dynamic soundscape: mapping time to space for audio browsing. In: Proceedings CHI'97. ACM Press Addison-Wesley, 1997; 194–201Google Scholar
  13. 13.
    Schmandt C, Mullins A. AudioStreamer: exploiting simultaneity for listening. In: Proceedings CHI'95. ACM Press Addison-Wesley, 1995; 218–219Google Scholar
  14. 14.
    Gaver WW. The sonic finder: an auditory interface that uses auditory icons. Human-Computer Interaction 1989; 4:67–94Google Scholar
  15. 15.
    Brewster SA. The design of sonically-enhanced widgers. Interacting with Computers 1998; 11:211–235Google Scholar
  16. 16.
    Brewster SA, Cryer PG. Maximising screen-space on mobile computing devices. In: Proceedings CHI'99. ACM Press, Addison-Wesley, 1999; 224–225Google Scholar
  17. 17.
    Albers MC, Bergman E. The audible web: auditory enhancements for Mosaic. In: CHI'95 Conference Companion. ACM Press Addison-Wesley, 1995; 318–319Google Scholar
  18. 18.
    Crease M, Brewster SA. Making progress with sounds—the design and evaluation of an audio progress bar. In: Proceedings ICAD, 1998Google Scholar
  19. 19.
    Buxton W. Introduction to this special issue on nonspeech audio. HCI 1989; 4:1–9Google Scholar
  20. 20.
    Conn AP. Time affordances: the time factor in diagnostic usability heuristics. In: Proceedings CHI'95. ACM Press Addison-Wesley, 1995; 186–193Google Scholar
  21. 21.
    Brown C.P. Modeling the elevation characteristics of the head-related impulse response. Technical Report 13, San José State University, 1996Google Scholar
  22. 22.
    Wenzel EM, Arruda M, Kistler DJ, Wightman FL. Localization using nonindividualized head-related transfer functions. J. Acoust. Soc. Am. 1993; 94:111–123Google Scholar
  23. 23.
    Hart S, Staveland L. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Handock P, Meshkati N. (Eds) Human mental workload. North Holland BV, 1988; 139–183Google Scholar
  24. 24.
    Levine G, Parkinsons. Experimental Methods in Psychology. Lawrence Erlbaum, 1994Google Scholar
  25. 25.
    Paterson RD, Edworthy J, Shailer MJ, Lower MC, Wheeler PD. Alarm sounds for medical equipment in intensive care areas and operating theatres. Technical Report AC598, University of Southhampton, Auditory Communication and Hearing Unit, 1986Google Scholar
  26. 26.
    Cherry EC. Some experiments on the recognition of speech. J. Acoust. Soc. Am. 1953; 25: 975–979Google Scholar
  27. 27.
    Grier JB. Nonparametric indexes for sensitivity and bias. Psychological Bulletin, 1971: 339–346Google Scholar

Copyright information

© Springer-Verlag London Ltd 2000

Authors and Affiliations

  1. 1.Department of Computing ScienceUniversity of GasgowGlasgowScotland

Personalised recommendations