Skip to main content
Log in

Chemical and biological consequences of β-decay

Part 1

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

Radioactive decay in a labelled molecule leads to specific chemical and biological consequences which are due to local transmutation effects such as recoil, electronic excitation, build-up of charge states and change of chemical identity, as well as to internal radiolytic effects. In the present paper these effects are reviewed emphasizing the relation of the chemical alterations on a molecular level to the biological manifestation. Potential importance of this type of research for biomedical applications is pointed out. In part 1 we review the underlying physical and chemical principles and consequences of β-decay of3H,14C,32P,33P,35S and125I for gaseous and simple condensed organic systems. Part 2 which will appear in the next issue will include the discussion of biological effects associated with β-decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wexler, S.: Primary physical and chemical effects associated with emission of radiation in nuclear processes. In: Actions chimiques et biologiques des radiations, huitième serie, pp. 105–241. Paris: Masson 1965

    Google Scholar 

  2. Stöcklin, G.: Chemie heißer Atome. Weinheim: Verlag Chemie 1969 and edition in French: Chimie des atomes chauds. Paris: Masson 1972

    Google Scholar 

  3. Maddock, A. G., Wolfgang, R.: In: Nuclear chemistry, Vol. II (Yaffe, L., Ed.). London-New York: Academic Press 1968

    Google Scholar 

  4. IAEA: Biological effects of transmutations and decay of incorporated radioisotopes. Proc. Panel IAEA Vienna 1967. STI/PUB/183 (1968)

  5. Krisch, R. E., Zelle, M. R.: Biological effects of radioactive decay. The role of transmutation effect. Advanc. Rad. Biol.3, 177–213 (1969)

    Google Scholar 

  6. Feinendegen, L. E.: Biological damage from the Auger effect. Possible benefits. Rad. Environm. Biophys.12, 85–98 (1975)

    Google Scholar 

  7. Proc. Int. Conf. Molecular- and Microdistribution of Radioisotopes and Biological Consequences. Jülich, Oct. 1975. Curr. Top. Rad. Res. (in press)

  8. Hsiung, D., Gordus, A. A.: Chemical effects of nuclear transformations, Vol. II, p. 461. IAEA Vienna 1965

    Google Scholar 

  9. Steinwedell, H., Jensen, J. H.: Z. Naturforsch.2a, 125 (1947)

    Google Scholar 

  10. Raadschelders-Buijze, C.: Dissertation. Freie Universität Amsterdam 1974

  11. Migdal, A.: J. Physics (Moskau)4, 449 (1941)

    Google Scholar 

  12. Serber, R., Snyder, H. S.: Phys. Rev.87, 152 (1952)

    Google Scholar 

  13. Raadschelders-Buijze, C., Roos, C. L., Ros, P.: Chem. Phys.1, 468 (1973)

    Google Scholar 

  14. Wexler, S.: J. Inorg. Nucl. Chem.10, 8 (1959)

    Google Scholar 

  15. Cacace, F.: Gaseous carbonium ions from the decay of tritiated molecules. In: Advances in physical organic chemistry, Vol. 8, pp. 79–149. London-New York: Academic Press 1970

    Google Scholar 

  16. Snell, A. Pleasonton, F.: J. Phys. Chem.62, 1377 (1958)

    Google Scholar 

  17. Wolfgang, R. L., Anderson, R. C., Dodson, R. W.: J. Chem. Phys.24, 16 (1956)

    Google Scholar 

  18. Pluciennik, H., Kanski, R.: Bull. Acad. pol. Sci.21, 555 (1973)

    Google Scholar 

  19. Carlson, T. A., White, R. M.: J. Chem. Phys.38, 2930 (1963)

    Google Scholar 

  20. Carlson, T. A., White, R. M.: Chemical effects of nuclear transformations, Vol. I, p. 23. IAEA Vienna 1965

    Google Scholar 

  21. Schroth, F., Adloff, J. P.: J. Chem. Phys.61, 1373 (1964)

    Google Scholar 

  22. Knust, E. J., Halpern, A., Stöcklin, G.: J. Amer. Chem. Soc.96, 3733 (1974)

    Google Scholar 

  23. Transfer and storage of energy by molecules, Vol. 1: Electronic energy (Burnett, G. M., North, A. M. Eds.) Wiley-Interscience 1969; Vol. 4: The solid state (Burnett, G. M., North, A. M., Sherwood, J. N., Eds.) J. Wiley and Sons 1974

  24. Carlson, T. A.: Rad. Res.64, 53 (1975)

    Google Scholar 

  25. Johnson, E. R.: The radiation induced decomposition of inorganic molecular ions. London: Cordon and Breach 1970

    Google Scholar 

  26. Geissler, P. A., Willard, J. E.: J. Phys. Chem.67, 1675 (1963)

    Google Scholar 

  27. Merrigan, S. A., Ellgren, W. K., Rack, E. P.: J. Chem. Phys.44, 174 (1966)

    Google Scholar 

  28. DeFonseca, A. J. R., Fuller, K., Lathan, A., Shaw, P. F. O.: Radiochem. Radioanalyt. Lett.2, 69 (1969)

    Google Scholar 

  29. Den Hollander, W.: Thesis. University Amsterdam 1974

  30. Van der Jagt, P. J.: Thesis. University Amsterdam 1974

  31. Manning, P. G., Monk, C. B.: J. Chem. Soc., 2573 (1962)

  32. Nefedov, V. D., Skorobogatov, G. A., Novak, K., Pluchennik, G.: Zhurnal Obshchei Khimii33, (2), 339 (1963)

    Google Scholar 

  33. Halpern, A., Sochacka, R.: J. Inorg. Nucl. Chem.23, 7 (1961)

    Google Scholar 

  34. Adloff, M., Adloff, J. P.: Bull. Soc. Chim. France, 3304 (1966)

  35. Llabrador, Y., Adloff, J. P.: Radiochim. Acta6, 49 (1966)

    Google Scholar 

  36. Llabrador, Y., Adloff, J. P.: Radiochim. Acta8, 41 (1967)

    Google Scholar 

  37. Llabrador, Y., Adloff, J. P.: Radiochim. Acta9, 171 (1969)

    Google Scholar 

  38. Nefedov, W. D., Kirin, J. S., Zaitseva, V. M.: Sov. Radiochim.4, 311 (1962)

    Google Scholar 

  39. Nefedov, W. D., Kirin, J. S., Zaitseva, V. M.: Sov. Radiochim.6, 70 (1964)

    Google Scholar 

  40. Jiang, V. W., Krohn, K. A., Welch, M. J.: J. Artier. Chem. Soc.97, 6551 (1975)

    Google Scholar 

  41. Jiang, V. W., Welch, M. J.: Rad. Res.69, 16 (1977)

    Google Scholar 

  42. Akaboshi, M., Kawai, K., Waki, A.: Biochim. biophys. Acta (Amst.)5, 238 (1971)

    Google Scholar 

  43. Cacace, F., Stöcklin, G.: Curr. Top. Rad. Res. Quart. (in press)

  44. Lang, G.: Phys. Bull.21, 250 (1970)

    Google Scholar 

  45. Wertheim, G. K.: Accounts Chem. Res.4, 373 (1971)

    Google Scholar 

  46. Adloff, J. P., Fried, J. M.: Mössbauer Effect and its Applications. IAEA Vienna 1972

    Google Scholar 

  47. Johnson, C. E.: Amino Acids, Peptides, Proteins5, 215 (1974);6, 256 (1975)

    Google Scholar 

  48. Müller, A.: Progr. Biophys. Mol. Biol.17, 99 (1967)

    Google Scholar 

  49. Benson, B., Snipes, W.: J. Chem. Phys.49, 1435 (1965)

    Google Scholar 

  50. Deutzmann, R., Halpern, A.: Unpublished results (1976)

  51. Lassmann, G.: Colloque Ampere XIV, Proceedings. Amsterdam: North Holland Publ. 1967

    Google Scholar 

  52. Halpern, A., Deutzmann, R., Stöcklin, G.: Curr. Top. Rad. Res. Quart. (in press)

  53. Halpern, A., Stöcklin, G.: Rad. Res.58, 329 (1974)

    Google Scholar 

  54. Diehn, B., Halpern, A., Stöcklin, G.: J. Amer. Chem. Soc.98, 1077 (1976)

    Google Scholar 

  55. Gomberg, H. J., Luse, R. A., Martinez, F. V.: Puerto Rico Nuclear Center, Progress Report No. 1, PRNC 12 (1963)

  56. Diefallah, E. M., Stelter, L., Diehn, B.: Rad. Res.44, 273 (1970)

    Google Scholar 

  57. Keough, G., Hofer, K. G.: Rad. Res.67, 224 (1976)

    Google Scholar 

  58. Gilbert, E.: Z. Naturforsch.28b, 805 (1973); Schulte-Frohlinde, D. et al., ibid.26b, 209; 308 (1971)

    Google Scholar 

  59. Deutzmann, R., Halpern, A., Stöcklin, G.: Unpublished results (1977)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpern, A., Stöcklin, G. Chemical and biological consequences of β-decay. Radiat Environ Biophys 14, 167–183 (1977). https://doi.org/10.1007/BF01323937

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01323937

Keywords

Navigation