Skip to main content
Log in

Oxygenation of malignant tumors after localized microwave hyperthermia

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

The oxyhemoglobin saturation (HbO2) of single red blood cells within tumor microvessels (diameter: 3–12 µm) of DS-Carcinosarcoma was studied using a cryophotometric micromethod. In untreated control tumors (mean tissue temperature approx. 35° C) the measured values scattered over the whole saturation range from zero to 100 sat.%, the mean being 51 sat.%. Upon heating at 40° C for 30 min, the oxygenation of the tumor tissue significantly improved as compared with control conditions. After 40° C-hyperthermia a mean oxyhemoglobin saturation of 66 sat.% was obtained. In contradistinction to this, after 43° C-hyperthermia the tumor oxygenation was significantly lower and reached a mean HbO2 saturation value of 47 sat.%. A further temperature rise to 45° C caused the oxygenation to drop drastically (mean oxyhemoglobin saturation value: 24 sat.%). This is due to a severe restriction of nutritive blood flow.

The changes in tumor oxygenation after hyperthermia seem to be predominantly mediated through changes in tumor blood flow, including tumor microcirculation, which showed a similar temperature dependence. Metabolic effects probably play a minor role in the oxyhemoglobin saturation distribution within tumor microvessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker H, Luebbers DW, Heinrich R, Grunewald WA (1978) First cryophotometric measurements of the HbO2-saturation in the cat carotid body. Adv Exp Med Biol 94: 63–67

    Google Scholar 

  2. Bicher HI, Vaupel P (1980) Physiological mechanisms of localized microwave hyperthermia. In: Arcangeli G, Mauro M (eds) Proc. 1st Meeting of the European Group of Hyperthermia in Radiation Oncology. Masson, Milano, pp 95–100

    Google Scholar 

  3. Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O'Hara MD, O'Brien T (1980) Effects of hyperthermia on normal and tumor microenvironment. Radiology 137: 523–580

    Google Scholar 

  4. Dickson JA (1977) The effects of hyperthermia in animal tumor systems. Rec Res Cancer Res 59:43–111

    Google Scholar 

  5. Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: A critical review. Ann NY Acad Sci 335: 180–205

    Google Scholar 

  6. Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137: 515–521

    Google Scholar 

  7. Emami B, Nussbaum GH, TenHaken RK, Hughes WL (1980) Physiological effects of hyperthermia: Response of capillary blood flow and structure to local tumor heating. Radiology 137: 805–809

    Google Scholar 

  8. Emami B, Nussbaum GH, Hahn N, Piro AJ, Dritschilo A, Quimby F (1981) Histopathological study on the effects of hyperthermia on microvasculature. Int J Radiat Oncol Biol Phys 7: 343–348

    Google Scholar 

  9. Endrich B, Zweifach BW, Reinhold HS, Intaglietta M (1979) Quantitative studies of microcirculatory function in malignant tissue: Influence of temperature on microvascular hemodynamics during the early growth of the BA 1112 rat sarcoma. Int J Radiat Oncol Biol Phys 5: 2021–2030

    Google Scholar 

  10. Gerweck LE, and Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41: 845–849

    Google Scholar 

  11. Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39: 966–972

    Google Scholar 

  12. Grunewald WA, Luebbers DW (1975) Die Bestimmung der intracapillären HbO2-Sättigung mit einer kryomikrofotometrischen Methode angewandt am Myocard des Kaninchens. Pfluegers Arch 353: 255–273

    Google Scholar 

  13. Grunewald WA, Luebbers DW (1976) Kryomicrophotometry as a method for analyzing the intracapillary HbO2 saturation of organs under different O2 supply conditions. Adv Exp Med Biol 75: 55–64

    Google Scholar 

  14. Grunewald WA, Manz R (1977) Intrakapilläre HbO2-Sättigungsmessung - eine Methode zur Analyse der O2-Versorgung des Skelettmuskels unter physiologischen und pathophysiologischen Bedingungen. In: Jahnke K, Mehnert H, Reis HE (eds), Muskelstoffwechsel, körperliche Leistungsfähigkeit und Diabetes mellitus. Stuttgart, New York, Schattauer, pp 73–79

    Google Scholar 

  15. Gullino PM, Yi PN, Grantham FH (1978) Relationship between temperature and blood supply or consumption of oxygen and glucose by rat mammary carcinomas. J Natl Cancer Inst 60: 835–847

    Google Scholar 

  16. Hahn GG (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    Google Scholar 

  17. Holtz H, Grunewald WA, Manz R, von Restorff W, Bassenge E (1977) Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of the left ventricular myocardium. Pfluegers Arch 370: 253–258

    Google Scholar 

  18. Johnson R (1975) Effect of hyperthermia on tumor blood flow. In: Proc. Internat. Sympos. Cancer Therapy by Hyperthermia and Radiation, American College of Radiology, Washington D.C., pp 154–155.

    Google Scholar 

  19. Luebbers DW, Wodick R (1969) The examination of multicomponent systems in biological materials by means of a rapid scanning photometer. Appl Opt 8: 1055–1062

    Google Scholar 

  20. Mueller-Klieser W, Zander R, Vaupel P (1978) Oxygen consumption of tumor cells suspended in native ascitic fluid at 1–42° C. Pfluegers Arch 377: R 17

    Google Scholar 

  21. Mueller-Klieser W, Vaupel P, Manz R, Grunewald WA (1980) Intracapillary oxyhemoglobin saturation in malignant tumours with central or peripheral blood supply. Eur J Cancer 16: 195–201

    Google Scholar 

  22. Mueller-Klieser W, Vaupel P, Manz R, Schmidseder R (1981) Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int J Radiat Oncol Biol Phys 7: 1397–1404

    Google Scholar 

  23. Otte J, Manz R, Mueller-Klieser W, Gabbert H, Vaupel P (1981) Oxygenation of DS-Sarcoma at different implantation sites. Pfluegers Arch 389: R 50

    Google Scholar 

  24. Overgaard J (1977) Effect of hyperthermia on malignant cells in vivo. Cancer 39: 2637–2646

    Google Scholar 

  25. Overgaard J (1981) Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br J Cancer 54: 245–249

    Google Scholar 

  26. Overgaard J, Nielsen OS (1980) The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sci 335: 254–278

    Google Scholar 

  27. Sinha AK, Neubauer JA, Lipp JA, Weiss HR (1977) Blood O2 saturation determination in frozen tissue. Microvasc Res 14: 133–144

    Google Scholar 

  28. Snedecor GW, Cochran WG (1973) Statistical Methods. The Iowa State University Press, Ames

    Google Scholar 

  29. Song CW, Rhee JG, Levitt SH (1980) Blood flow in normal tissues and tumors during hyperthermia. J Natl Cancer Inst 64: 119–124

    Google Scholar 

  30. Song CW, Kang MS, Rhee JG, Levitt SH (1980) The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137: 795–803

    Google Scholar 

  31. Suit HD (1977) Hyperthermic effects on animal tissues. Radiology 123: 483–487

    Google Scholar 

  32. Vaupel P (1977) Hypoxia in neoplastic tissue. Microvasc Res 13: 399–408

    Google Scholar 

  33. Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. CRC Press, West Palm Beach, pp 143–168

    Google Scholar 

  34. Vaupel P, Ostheimer K, Mueller-Klieser W (1980) Circulatory and metabolic responses of malignant tumors during localized hyperthermia. J Cancer Res Clin Oncol 98: 15–29

    Google Scholar 

  35. Vaupel P, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41: 2008–2013

    Google Scholar 

  36. Vaupel P, Manz R, Mueller-Klieser W (1979) Respiratory gas exchange in the rat spleen in situ and intrasplenic oxyhemoglobin saturation. Pfluegers Arch 379: 109–111

    Google Scholar 

  37. Vaupel P, Grunewald WA, Manz R, Sowa W (1978) Intracapillary HbO2 saturation in tumor tissue of DS-Carcinosarcoma during normoxia. Adv Exp Med Biol 94: 367–375

    Google Scholar 

  38. Vaupel P, Manz R, Mueller-Klieser W, Grunewald WA (1979) Intracapillary HbO2 saturation in malignant tumors during normoxia and hyperoxia. Microvasc Res 17: 181–191

    Google Scholar 

  39. Vaupel P, Frinak S, Mueller-Klieser W, Bicher HI (1982) Impact of localized hyperthermia on the cellular microenvironment in solid tumors. Natl Cancer Inst Monogr 60: in press

  40. von Ardenne M, Lippmann HG, Reitnauer PG, Justus J (1979) Histological proof for selective stop of microcirculation in tumor tissue at pH 6.1 and 41° C. Naturwissenschaften 66: 59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaupel, P.W., Otte, J. & Manz, R. Oxygenation of malignant tumors after localized microwave hyperthermia. Radiat Environ Biophys 20, 289–300 (1982). https://doi.org/10.1007/BF01323754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01323754

Keywords

Navigation