Skip to main content
Log in

Scaling characteristics of ac conductivity and dielectric function in fractal regime of the metal-insulator transition

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

An analysis of the ac conductivity σac(ω), and the ac dielectric constant, ɛ(ω), of the metal-insulator percolation systems is presented in the critical regime near the transition threshold. It is argued that the polarization and relaxation of the finite fractal metallic clusters play dominant roles in controlling the dynamic response of the system on both sides of the threshold. The relaxation time constant of a fractal cluster is shown to scale with its size as\(\tau _s \sim r_s^{d_t } \) withd t = 4 − 2d +d c + μ/ν, whered is tge Euclidean dimension, andd c , μ, and ν are the scaling indices for the charging, the dc conductivity, and the correlation length respectively. The average time dependent response of the system is shown to scale with a new time scale\(\tau _0 \xi ^{d_t } \), where ζ is the correlation length and τ0 is a microscopic time constant. It is shown that at frequencies\(\begin{array}{*{20}c} {\xi ^{ - d_t } \ll \omega \tau _0 \ll 1,} & {\sigma _{ac} (\omega ) \sim \omega ^{{\mu \mathord{\left/ {\vphantom {\mu {\nu d_t }}} \right. \kern-\nulldelimiterspace} {\nu d_t }}} } \\ \end{array} \) and\(\varepsilon (\omega ) \sim \omega ^{{\mu \mathord{\left/ {\vphantom {\mu {\nu d_t - 1}}} \right. \kern-\nulldelimiterspace} {\nu d_t - 1}}} \) with μ/νdt ≃ 1, in close agreement with experiments. The effects of the anomalous transport along the infinite cluster and the medium polarizability are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stauffer, D.: Introduction to percolation theory. London, Philadelphia: Taylor and Francis 1985

    Google Scholar 

  2. Essam, J.W.: Rep. Prog. Phys.43, 833 (1980)

    Google Scholar 

  3. Voss, R.F., Laibowitz, R.B., Allessandrini, E.I.: Phys. Rev. Lett.49, 1441 (1982)

    Google Scholar 

  4. Kapitulnik, A., Deutscher, G.: Phys. Rev. Lett.49, 1444 (1982)

    Google Scholar 

  5. Gefen, Y., Aharony, A., Alexander, S.: Phys. Rev. Lett.50, 77 (1983)

    Google Scholar 

  6. Havlin, A., Ben-Avraham, D.: Adv. Phys.36, 695 (1987)

    Google Scholar 

  7. Hong, D.C., Stanley, H.E., Coniglio, A., Bunde, A.: Phys. Rev. B33, 4564 (1986)

    Google Scholar 

  8. Laibowitz, R.B., Gefen, Y.: Phys. Rev. Lett.53, 380 (1984)

    Google Scholar 

  9. Efros, A.L., Shklovskii, A.L.: Phys. Status Solidi (b)76, 475 (1976)

    Google Scholar 

  10. Bergman, D.J., Imry, Y.: Phys. Rev. Lett.39, 1222 (1977)

    Google Scholar 

  11. Straley, J.P.: J. Phys. C9, 783 (1976); Phys. Rev. B15, 5733 (1977)

    Google Scholar 

  12. Yadava, R.D.S.: J. Phys. F — Condensed Matter1, 7245 (1989)

    Google Scholar 

  13. de Arcangelis, L., Redner, S., Coniglio, A.: Phys. Rev. B34, 4656 (1986). See Sect. VI of this paper

    Google Scholar 

  14. Coniglio, A., Stanley, H.E.: Phys. Rev. Lett.52, 1068 (1984)

    Google Scholar 

  15. Grossman, T., Aharony, A.: J. Phys. A19, L745 (1986);ibid,20, L1193 (1987)

    Google Scholar 

  16. Bunde, A.: Philos. Mag. B59, 97 (1989)

    Google Scholar 

  17. Gefen, Y., Halley, J.W.: In: Kinetics of aggregation and gelation, Family, F., Landau, D.P. (eds.), p. 161. Amsterdam: North Holland/Elsevier 1984

    Google Scholar 

  18. Amitrano, C., Bunde, A., Stanley, H.E.: J. Phys. A18, L923 (1985)

    Google Scholar 

  19. Maritan, A., Stella, A.: Phys. Rev. B34, 456 (1986)

    Google Scholar 

  20. Bunde, A., Dieterich, W.: Phys. Rev. B31, 6012 (1985)

    Google Scholar 

  21. Yadava, R.D.S.: Z. Phys. B — Condensed Matter76, 365 (1989)

    Google Scholar 

  22. Mandelbrot, B.B.: The fractal geometry of nature, p. 135. New York: Freeman 1983

    Google Scholar 

  23. Toll, J.S.: Phys. Rev.104, 1760 (1956)

    Google Scholar 

  24. Bolton, H.C.: Philos. Mag.19, 487 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadava, R.D.S. Scaling characteristics of ac conductivity and dielectric function in fractal regime of the metal-insulator transition. Z. Physik B - Condensed Matter 86, 93–99 (1992). https://doi.org/10.1007/BF01323553

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01323553

Keywords

Navigation