Skip to main content
Log in

Similarity analysis and asymptotic models

ähnlichkeitsanalyse und asymptotische Modelle

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Fundamental problems of the heat transfer theory and physical hydrodynamics are associated with the most complicated processes of macrophysics: turbulence, multiphase and multi-component interactions and physico-chemical conversions of substances. In this field there are no good and sufficiently universal model equations. Moreover, the principal vista of their derivation is still obscure. The probabilistic essence of these processes in the small and almost classical determinancy on the average are the most important here. Similarity methods, mathematical and physical simulation, separation of conservative characteristics and elucidation of asymptotic processes are of the decisive character here. The German school of research workers has made a significant contribution to these studies.

A compact representation of several important problems of this kind is just the subject of the present communication. Several data are the original results of the studies which have been performed by the author since 1935.

The paper is preceded by a preface devoted to Professor U. Grigull on his 70th birthday.

Zusammenfassung

Die grundlegenden physikalischen Probleme der Wärmetransporttheorie und Hydrodynamik stellen sehr komplizierte Prozesse der Makrophysik dar wie: Turbulenz, die gegenseitige Einwirkung mehrphasiger und mehrkomponentiger Systeme sowie physico-chemische Umwandlung von Stoffen.

Auf diesen Gebieten existieren keine guten und universellen Modellgleichungen. Darüber hinaus ist der prinzipielle Weg ihrer Herleitung noch immer unklar. Hier ist von Bedeutung, daß die Wirkung der Prozesse mit Hilfe klassischer Methoden durch mittlere Größen beschrieben werden können. ähnlichkeitsmethoden, mathematische und physikalische Simulation, Trennung von konservativen Merkmalen und die Betrachtung von asymptotischen Prozessen sind hier die entscheidenden Merkmale. Forscher der deutschen Schule haben hier einen bedeutenden Beitrag geleistet.

Eine geraffte Darstellung verschiedener wichtiger Probleme dieser Art ist Thema des vorliegenden Beitrages. Einige Untersuchungen stellen Originalergebnisse dar, die vom Autor selbst seit 1935 durchgeführt wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

U :

scale flow velocity (e.g., velocity outside boundary layer or average flow-rate velocity in channel)

R :

characteristic linear dimensions (e.g., tube radius, equivalent drop or bubble radius)

Ν :

kinematic viscosity

ϱ :

density

σ :

surface tension coefficient

g :

gravitational acceleration

r :

latent heat of evaporation

T s :

saturation temperature

C :

specific heat

λ :

heat fransfer coefficient. Accents ′ and ″ correspond to liquid and gas (vapor), respectively

References

  1. Rayleigh: Nature 95 (1915) 66

  2. Bridgman, P. W.: Dimensional Analysis. Moscow-Leningrad, GTTI (1939) (in Russian)

    Google Scholar 

  3. Ehrenfest-Afanassjewa, T. A.: Phil. Mag. 1 (1926) 257–272

    Google Scholar 

  4. Einstein, A.: Collection of Works. Moscow, Nauka 3 (1966) 505–506 (in Russian)

    Google Scholar 

  5. Gortler, H.: ZAMM 55 (1975) 3–8

    Google Scholar 

  6. Khabakhpasheva, E. M., Efimenko, G. I.: Distribution of Tangential Stresses and Velocities in the Near-Wall Region of Turbulent Boundary Layer. Preprint of the Institute of Thermophysics, Novosibirsk (1981) 67–81

  7. Peebles, F. N.; Garber, H. G.: Vhem. Eng. Progr. 49 (1953) 88–97

    Google Scholar 

  8. Frank-Kamenetzky, D. A.: Diffusion and Heat Transfer in Chemical Kinetics. Moscow, USSR Academy of Sciences (1947)

    Google Scholar 

  9. Insinger, T. H.; Bliss, H.: Trans Am. Instr. Chem. Eng. 36 (1940) 491–516

    Google Scholar 

  10. Kruzhilin, G. N.: Izvestia AN SSSR, OTN 5 (1949)

  11. Tolubinsky, V. I.; Kichigin, A. M.; Povstel, S. G.: Thermophysics and Thermal Engineering 30 (1976) 3–9 (in Russian)

    Google Scholar 

  12. Kutateladze, S. S.: Zeitschrift für Techn. Physik (Leningrad) 20 (1950) 1389–1392

    Google Scholar 

  13. Zuber, N.: Hydrodynamics Aspects of Boiling Heat Transfer. AECV (1959) 439

  14. Nusselt, W.: VDJ Zeitschrift 53 (1909) 1750–1812

    Google Scholar 

  15. Nusselt, W.: Gesundheits-Ingenieur 42 (1915) 477–482; 43 490–496

    Google Scholar 

  16. Ehrenfest-Afanassjewa, T. A.: Math. Ann. 72 (1916) 259

    Google Scholar 

  17. Lin, C. C.: The Theory of Hydrodynamic Stability. Cambridge: University Press 1953

    Google Scholar 

  18. Kutateladze, S. S.; Leontyev, A. I.: Turbulent Boundary Layers in Compressible Gases. Novosibirsk 1962; London, E. Arnold Publ.; New York: Academic Press 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated Prof. Dr.-Ing. Grigull on his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutateladze, S.S. Similarity analysis and asymptotic models. Wärme- und Stoffubertragung 16, 3–7 (1982). https://doi.org/10.1007/BF01322800

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322800

Keywords

Navigation