Skip to main content
Log in

Correlation functions near instabilities in systems driven by parametric noise

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The steady-state correlation functions of non-linear stochastic processes driven by parametric noise are studied. A systematic method proposed by Nadler and Schulten is applied beyond the lowest order for the first time in this context. It is reformulated in a way which admits generalization to noises other than Gaussian and white. The explicit results obtained close to the instability point for the Verhulst model with Gaussian white noise improve considerably those previously obtained by continued-fraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moss, F., McClintock, P.V.E. (eds.): Noise in nonlinear dynamical systems. Cambridge: Cambridge University Press 1989

    Google Scholar 

  2. Bermejo, F.J., Pesquera, L. (eds.). Dynamics of non-linear optical systems. Singapore: World Scientific 1989

    Google Scholar 

  3. Kaminishi, K., Roy, R., Short, R., Mandel, L.: Phys. Rev. A24, 370 (1981)

    Google Scholar 

  4. Short, R., Mandel, L., Roy, R.: Phys. Rev. Lett.49, 647 (1982)

    Google Scholar 

  5. Lett, P.D., Gage, E.C.: Phys. Rev. A39, 1193 (1989)

    Google Scholar 

  6. Graham, R., Hönerbach, M., Schenzle, A.: Phys. Rev. Lett.48, 1396 (1982)

    Google Scholar 

  7. Dixit, S.W., Sahni, P.S.: Phys. Rev. Lett.50, 1273 (1983)

    Google Scholar 

  8. Hernández-Machado, A., San Miguel, M., Katz, S.: Phys. Rev. A31, 2362 (1985)

    Google Scholar 

  9. Leiber, Th., Jung, P., Risken, H.: Z. Phys. B-Condensed Matter68, 123 (1987)

    Google Scholar 

  10. Aguado, M., Hernández-García, E., San Miguel, M.: Phys. Rev. A38, 5670 (1989)

    Google Scholar 

  11. Grossmann, S.: Phys. Rev. A17, 1123 (1978)

    Google Scholar 

  12. Fujisaka, H., Grossmann, S.: Z. Phys. B-Condensed Matter43, 69 (1981)

    Google Scholar 

  13. Hernández-Machado, A., San Miguel, M., Sancho, J.M.: Phys. Rev. A29, 3388 (1984)

    Google Scholar 

  14. Faetti, S., Festa, C., Fronzoni, L., Grigolini, P., Marchesoni, F., Palleschi, V.: Phys. Lett.99A, 25 (1984)

    Google Scholar 

  15. Mori, H.: Prog. Theor. Phys.33, 423 (1965);34, 399 (1965)

    Google Scholar 

  16. Zwanzig, R.: In: Lectures in theoretical physics. Brittin, W., Dunham, L. (eds.), Vol. 3, p. 135. New York: Wiley 1961

    Google Scholar 

  17. Hernández-Machado, A., Rodriguez, M.A., San Miguel, M.: Ann. Nucl. Energy12, 471 (1985)

    Google Scholar 

  18. Jung, P., Risken, H.: Z. Phys. B-Condensed Matter59, 469 (1985)

    Google Scholar 

  19. Nadler, W., Schulten, K.: J. Chem. Phys.82, 151 (1985)

    Google Scholar 

  20. Nadler, W., Schulten, K.: Z. Phys. B-Condensed Matter,59, 53 (1985)

    Google Scholar 

  21. Nadler, W., Schulten, K.: Z. Phys. B-Condensed Matter72, 535 (1988)

    Google Scholar 

  22. Nadler, W.: Z. Phys. B-Condensed Matter73, 271 (1988)

    Google Scholar 

  23. Nadler, W., Schulten, K.: Phys. Rev. Lett.51, 1715 (1983)

    Google Scholar 

  24. Horsthemke, W., Lefever, R.: Noise-induced transitions. In: Springer Series in Synergetics. Vol. 15. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  25. Kai, S., Kai, T., Takata, M.: J. Phys. Soc. Jpn.47, 1379 (1979)

    Google Scholar 

  26. Kawakubo, T., Yanagita, A., Kabashima, S.: J. Phys. Soc. Jpn.50, 1451 (1981)

    Google Scholar 

  27. Dutré, W.L., Debosscher, A.F.: Nucl. Sci. Eng.62, 355 (1977)

    Google Scholar 

  28. Graham, R., Schenzle, A.: Phys. Rev. A25, 1731 (1982)

    Google Scholar 

  29. Brenig, L., Banai, N.: Physica5D, 208 (1982)

    Google Scholar 

  30. Suzuki, M., Kaneko, K., Sasagawa, F.: Prog. Theor. Phys.65, 828 (1981)

    Google Scholar 

  31. Casademunt, J., Sancho, J.M.: Phys. Lett. A123 271 (1987); Casademunt, J., Sancho, J.M.: J. Stat. Phys. (1989) (in press)

    Google Scholar 

  32. Casademunt, J., Mannella, R., McClintock, P.V.E., Moss, F., Sancho, J.M.: Phys. Rev. A35, 5183 (1987)

    Google Scholar 

  33. The relations (2.4) and (2.6) can be easily obtained by expandingC(t) or exp(−ωt) of (2.2) respectively in powers oft

  34. The truncated continued fraction expansion is nothing but a rational function of ω which coincides with the exact Laplace transformC(ω) in a given number of the first coefficients of the 1/ω-expansion

  35. In (2.11) it is implicitly assumed that the processx(t) is Markovian. For non-Markovian processes the method is still valid when reformulated in its equivalent multivariable Markovian form. For more details see[30]

    Google Scholar 

  36. Gradshteyn, I.S., Ryzhik, I.M.: Tables of integrals, series and products. New York: Academic Press 1980

    Google Scholar 

  37. It has been argued that for additive noise models, a divergence of a relaxation time can only occur in the deterministic limit (D→0) as the so-called asymptotic critical slowing down of [30]

    Google Scholar 

  38. In general one could characterize long-time tails decaying with different exponents according to which relaxation moment diverges first

  39. Casademunt, J., Jiménez-Aquino, J.I., Sancho, J.M.: Physica A 156, 628 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casademunt, J., Hernández-Machado, A. Correlation functions near instabilities in systems driven by parametric noise. Z. Physik B - Condensed Matter 76, 403–411 (1989). https://doi.org/10.1007/BF01321919

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321919

Keywords

Navigation