Skip to main content
Log in

Numerical derivation of the generalized Ginzburg-Landau equations of wavy vortex flow

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Starting from the Navier-Stokes equations we treat the onset of the wavy vortex flow of the Taylor problem in a fully nonlinear manner. To this end we first transform the original partial differential equations into a set of ordinary differential equations by means of a Galerkin method. By a specific choice of the basic functions the Galerkin coefficients acquire a very concise form. Since these functions fulfil the boundary conditions individually, there are no additional constraints on these coefficients, which usually stem from the boundary conditions. We then first calculate the Taylor vortex flow and perform a linear stability analysis of it. Finally we calculate the coefficients of the generalized Ginzburg-Landau equations in the vicinity of the second threshold and solve these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haken, H.: Synergetics. An Introduction. 3rd Edn. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  2. Haken, H.: Advanced synergetics. 2nd printing. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  3. Taylor, G.I.: Philos. Trans. A.223, 289 (1923)

    Google Scholar 

  4. Kogelmann, S., Di Prima, R.C.: Phys. Fluids13, 1 (1970)

    Google Scholar 

  5. Coles, D.: J. Fluid Mech.21, 385 (1965)

    Google Scholar 

  6. Compare for instance Sect. 8 in Ref. 2

  7. Andereck, C.D., Dickmann, R., Swinney, H.L.: Phys. Fluids26, 1395 (1983)

    Google Scholar 

  8. Couette, M.M.: Ann. Chim. Phys.6, Ser. 21 433 (1890)

    Google Scholar 

  9. Mallock, A.: Philos. Trans. R. Soc. A187, 41 (1896)

    Google Scholar 

  10. Chandrasekhar, S.: Proc. R. Soc. A256, 301 (1958)

    Google Scholar 

  11. Kirchgässner, K.: ZAMP12, 14 (1961)

    Google Scholar 

  12. Stuart, J.T.: J. Fluid Mech.4, 1 (1958)

    Google Scholar 

  13. Davey, A.: J. Fluid Mech.14, 336 (1962)

    Google Scholar 

  14. Kirchgässner, K., Sorger, P.: Q. J. Mech. Appl. Math.22, 183 (1969)

    Google Scholar 

  15. Graham, R., Domaradzki, J.A.: Phys. Rev. A26, 1572 (1982)

    Google Scholar 

  16. Iooss, G.: J. Fluid Mech.173, 273 (1986)

    Google Scholar 

  17. Davey, A., Di Prima, R.C., Stuart, J.T.: J. Fluid Mech.31, 17 (1968)

    Google Scholar 

  18. Di Prima, R.C., Swinney, H.L.: In: Hydrodynamic instabilities and the transition to turbulence. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  19. Meyer, K.A.: Los Alamos Sci. Lab. Rep. LA-3497 (1966)

  20. Booz, O.: Dissertation, Universität Stuttgart (1980)

  21. Jones, C.A.: J. Fluid Mech.102, 249 (1981)

    Google Scholar 

  22. Jones, C.A.: J. Fluid Mech.157, 135 (1985)

    Google Scholar 

  23. Marcus, P.S.: J. Fluid Mech.146, 45 (1984)

    Google Scholar 

  24. Fletcher, C.A.J.: Computational Galerkin methods. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  25. Tricomi, F.G.: Vorlesungen über Orthogonalreihen. Berlin, Heidelberg, New York: Springer 1955

    Google Scholar 

  26. Marx, K.: Ph.D. Thesis, Universität Stuttgart (1987)

  27. Snyder, H.A.: J. Fluid Mech.35, 273 (1969)

    Google Scholar 

  28. Friedrich, R.: Ph.D. Thesis, Universität Stuttgart (1986)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, K., Haken, H. Numerical derivation of the generalized Ginzburg-Landau equations of wavy vortex flow. Z. Physik B - Condensed Matter 75, 393–411 (1989). https://doi.org/10.1007/BF01321827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321827

Keywords

Navigation