Skip to main content
Log in

Stability properties of Cauchy's surface area formula

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Cauchy's surface area formula expresses the surface area of ad-dimensional convex body in terms of the mean value of the volume of its orthogonal projections onto (d−1)-dimensional linear subspaces. We consider here averages of the same kind as those in Cauchy's formula but with respect to some direction dependent density function and investigate the stability problem whether the density must be close to 1 if the formula produces approximately the correct surface area. It will be shown that this relationship between surface area and density is, in general, unstable; but if the density function satisfies suitable regularity conditions, then explicit stability estimates can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Berlin: Springer. 1934.

    Google Scholar 

  2. Bourgain, J., Lindenstrauss, J.: Projection bodies. In: Geometric Aspects of Functional Analysis. Lect. Notes Math.1317. (J. Lindenstrauss and V. D. Milman, Eds.) Berlin-Heidelberg-New York: Springer. pp. 250–270. 1988.

    Google Scholar 

  3. Campi, S.: On the reconstruction of a function on a sphere by its integrals over great circles. Boll. Un. Mat. Ital. C(5)18, 195–215 (1981).

    Google Scholar 

  4. Campi, S.: On the reconstruction of a star-shaped body from its “half-volumes”. J. Austral. Math. Soc. (Ser. A)37, 243–257 (1984).

    Google Scholar 

  5. Campi, S.: Reconstructing a convex surface from certain measurements of its projections. Boll. Un. Mat. Ital. (6)5-B, 945–959 (1986).

    Google Scholar 

  6. Campi, S.: Recovering a centered convex body from the areas of its shadows: a stability estimate. Ann. Mat. Pura Appl.151, 289–302 (1988).

    Google Scholar 

  7. Goodey, P. R., Groemer, H.: Stability results for first order projection bodies. Proc. Amer. Math. Soc.109, 1103–1114 (1990).

    Google Scholar 

  8. Groemer, H.: Stability theorems for projections and central symmetrization. Arch. d. Math. To appear.

  9. Hochstadt, H.: The Functions of Mathematical Physics. New York: Dover. 1986.

    Google Scholar 

  10. Müller, C.: Spherical Harmonics. Lect. Notes Math. 17, Berlin-Heidelberg-New York: Springer. 1966.

    Google Scholar 

  11. Petty, C. M.: Centroid surfaces. Pacific J. Math.11, 1535–1547 (1961).

    Google Scholar 

  12. Santaló, L. A.: Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley. 1976.

    Google Scholar 

  13. Schneider, R.: Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Zeitschr.101, 71–82 (1967).

    Google Scholar 

  14. Schneider, R.: Boundary structure and curvature of convex bodies. In: Contributions to Geometry. Proc. of Geom. Symp., Siegen 1978. Basel-Boston-Stuttgart: Birkhäuser. 1979.

    Google Scholar 

  15. Schneider, R.: Stability in the Aleksandrov-Fenchel-Jessen Theorem. Mathematika36, 50–59 (1989).

    Google Scholar 

  16. Seeley, R. T.: Spherical harmonics. Am. Math. Monthly73, 115–121 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Leopold Vietoris on the occasion of his one hundredth birthday

Supported by National Science Foundation Research Grant DMS 8922399.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groemer, H. Stability properties of Cauchy's surface area formula. Monatshefte für Mathematik 112, 43–60 (1991). https://doi.org/10.1007/BF01321716

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321716

Keywords

Navigation