Skip to main content
Log in

Propagation and spreading of unstable perturbations in electron-hole plasmas subject to crossed fields

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A model is developed for electrostatic drift instabilities which arise in inhomogeneous electron-hole plasmas subject to crossed fieldsE 0B 0. The instabilities are initiated by gradients in the equilibrium plasma densityn 0. Using two-fluid magnetohydrodynamics and linear perturbation theory the dispersion relation of local density oscillations is calculated for arbitrary inhomogeneous equilibrium distributions and plasma densities. For cases where∇n 0B 0 andn +0 n -0 it is found that the propagation direction of maximal gain,\(\hat k_m \), is the bisectrix of the angle between (−∇n 0) and (E 0 ×B 0) and that stable and unstable configurations are distinguished by the angle between∇Φ 0 and∇n 0. A local density perturbation built by superpositions of the plane waves, and initially chosen radially symmetric, broadens unisotropically. In the direction transverse to\(\hat k_m \) the broadening is anomaleously enhanced, as compared to the broadening by diffusion in the stable case. The results are referred to experimental observations of low-frequency instabilities reported in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneider, W., Kirchesch, P.: Low-frequency instabilities of electron-hole plasmas in crossed fields, Z. Physik B29, 81 (1978)

    Google Scholar 

  2. Suzuki, T.: Instabilities of semiconductor plasmas in crossed electric and magnetic fields, J. Phys. Soc. Jap.21, 2000 (1966)

    Google Scholar 

  3. Miyazaki, M., Yamaguchi, J.: Instability associated with the gradient of carrier density in Ge slice, Jap. J. Appl. Phys.7, 1059 (1968)

    Google Scholar 

  4. Burke, B.E., Kino, G.S.: Observation of growing carrier waves in InSb, Appl. Phys. Lett.12, 310 (1968)

    Google Scholar 

  5. Kino, G.S.: Growing surface waves in a semiconductor in the presence of a transverse magnetic field. Appl. Phys. Lett.12, 312 (1968)

    Google Scholar 

  6. Burke, B.E., Kino, G.S.: Instability of a drifting semiconductor plasma in a transverse magnetic field. J. Appl. Phys.43, 3335 (1972)

    Google Scholar 

  7. Pines, D., Schrieffer, J.R.: Collective behavior in solid-state plasmas. Phys. Rev.124, 1387 (1961)

    Google Scholar 

  8. Hasegawa, A.: Microinstabilities in transversely magnetized semiconductor plasmas. J. Appl. Phys.36, 3590 (1965)

    Google Scholar 

  9. Robinson, B.B.: A collision induced instability in semiconductor plasmas. RCA Rev.28, 366 (1967)

    Google Scholar 

  10. Robinson, B.B., Swarz, G.A.: Two-stream instability in semiconductor plasmas. J. Appl. Phys.38, 2461 (1967)

    Google Scholar 

  11. Robinson, B.B.: Coherent microwave instabilities in a thinlayer solid-state plasma. J. Appl. Phys.40, 4598 (1969)

    Google Scholar 

  12. Robinson, B.B.: Electron-hole plasma instabilities, IEEE Trans. Electr. Devices16, 200 (1970)

    Google Scholar 

  13. Aronzon, B.A., Meilikohov, E.Z.: Generation of microwave radiation in n-InSb. Sov. Phys. Semic.7, 474 (1973)

    Google Scholar 

  14. Borodovskii, P.A., Luchinin, S.D., Pogreb, R.M.: Three-stream instability of impact-ionized plasma in n-InSb. Sov. Phys. Semic.10, 1294 (1976)

    Google Scholar 

  15. Gueret, P.: A theory of microwave instabilities in InSb. J. Appl. Phys.39, 2136 (1968)

    Google Scholar 

  16. Freire, G.F.: Active waves in solid-state plasmas. Int. J. Electronics28, 1 (1970)

    Google Scholar 

  17. Hsieh, H.C.: Probagation and instability of microwave in extrinsic InSb subject to crossed static electric and magnetic fields. Phys. Rev. B10, 4297 (1974)

    Google Scholar 

  18. Toda, M.: Theory of a microwave plasma instability due to transverse breakdown. J. Appl. Phys.37, 37 (1966)

    Google Scholar 

  19. King, J.E.: Nonisothermal conduction in InSb with orthogonal electric and magnetic fields. J. Appl. Phys.40, 5350 (1969)

    Google Scholar 

  20. van Welzenis, R.G., Lodder, J.J.: Generation-recombination noise and the microwave emission from InSb. J. Appl. Phys.44, 2696 (1973)

    Google Scholar 

  21. Madelung, O.: Halbleiter, in Handbuch der Physik Vol. XX, (ed. S. Flügge) p. 108ff. Berlin-Göttingen-Heidelberg: Springer 1957

    Google Scholar 

  22. Markus, M., Hübner, K.: Stabilitätsuntersuchungen für das Elektron-Loch-Plasma. Z. Physik267, 19 (1974)

    Google Scholar 

  23. Thompson, A.H., Kino, G.S.: Noise emission from InSb. J. Appl. Phys.41, 3064 (1970)

    Google Scholar 

  24. Hübner, K., Neidig, A.: Enhanced diffusion of an electron-hole plasma in InSb. Phys. Lett.44A, 233 (1973)

    Google Scholar 

  25. Bruhns, H., Hübner, K., Neidig, A., Schenk, L., Schneider, W.: Anomalous plasma diffusion transverse to high magnetic fields in InSb. Appl. Phys.10, 33 (1976)

    Google Scholar 

  26. Lin, C.C., Segal, L.A.: Mathematics applied to deterministic problems in the natural sciences, p. 80. New York: Mcmillan Publ. Co. 1974

    Google Scholar 

  27. See [26] p. 86

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kull, H., Schneider, W. Propagation and spreading of unstable perturbations in electron-hole plasmas subject to crossed fields. Z Physik B 30, 115–123 (1978). https://doi.org/10.1007/BF01320976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320976

Keywords

Navigation