Skip to main content
Log in

Acute effects of nasal salmon calcitonin on calcium and bone metabolism

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Effects of a single dose of 200 IU of nasal salmon calcitonin (SCT) on calcium metabolism and biochemical markers of bone turnover were investigated in 12 healthy male volunteers in a randomized, placebo-controlled, crossover design. The nasal spray was given in the morning, and subsequently blood and urine samples were collected for 26 hours. There was a significant decrease in serum ionized calcium with a nadir 4 hours after administration of nasal SCT accompanied by a significant increase in serum parathyroid hormone (P = 0.01) and serum calcitriol (P = 0.04). Nasal SCT did not reduce urinary hydroxyproline/creatinine. Urinary deoxypyridinoline/creatinine was lowered significantly 2 hours after administration of nasal SCT and throughout the first 24 hours, but remained unchanged for the last 2 hours. On a 24-hour basis, urinary deoxypyridinoline/creatinine decreased from 14.1 (3.5) nmol/mmol to 11.7 (3.2) nmol/mmol after nasal SCT (P = 0.04). Nasal SCT did not change the serum levels of alkaline phosphatase, osteocalcin, and the carboxyterminal propeptide of type 1 procollagen. The results indicate that nasal SCT given as a single dose provokes a modest decrease in bone resorption lasting several hours, but leaves bone formation unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krane SM, Harris ED, Singer FR, Potts JT (1973) Acute effects of calcitonin on bone formation in man. Metabolism 22:51–58

    Google Scholar 

  2. Riggs BL, Arnaud CD, Goldsmith RS, Taylor WF, McCall JT, Sessler SD (1971) Plasma kinetics and acute effects of pharmacologic doses of porcine calcitonin in man. J Clin Endocrinol 33:115–127

    Google Scholar 

  3. Simon LS, Krane SM, Wortman PD, Krane IM, Kovitz KL (1984) Serum levels of type I and 111 procollagen fragments in Paget's disease of bone. J Clin Endocrinol Metab 58:110–120

    Google Scholar 

  4. Gonzalez D, Ghiringhelli G, Mautalen C (1986) Acute antiosteoclastic effect of salmon calcitonin in osteoporotic women. Calcif Tissue Int 38:71–75

    Google Scholar 

  5. Martin TJ, Melick RA (1969) The acute effects of porcine calcitonin in man. Aus Ann Med 18:258–263

    Google Scholar 

  6. Bijvoet OLM, van der Sluys Veer J, Jansen AP (1968) Effects of calcitonin on patients with Paget's disease, thyrotoxicosis or hypercalcaemia. Lancet i:876–881

    Google Scholar 

  7. Stone MD, Marshall DH, Hosking DJ, Garcia-Himmelstine C, White DA, Worth HG (1992) Comparison of low-dose intramuscular and intravenous calcitonin in the treatment of primary hyperparathyroidism. Bone 13:265–271

    Google Scholar 

  8. Gonzales D, Vega E, Ghiringhelli G, Mautalen C (1987) Comparison of the acute effect of the intranasal and intramuscular administration of salmon calcitonin in Paget's disease. Calcif Tissue Int 41:313–315

    Google Scholar 

  9. Buclin T, Randin JP, Jacquet AF, Azria M, Attinger M, Gomez F, Burckhardt P (1987) The effect of rectal and nasal administration of salmon calcitonin in normal subjects. Calcif Tissue Int 41:252–258

    Google Scholar 

  10. Kivirikko KI, Laitinen O, Prockop DJ (1967) Modifications of a specific assay for hydroxyproline in urine. Anal Biochem 19:249–255

    Google Scholar 

  11. Eyre DR, Koob TJ, Van Ness KP (1984) Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid chromatography. Anal Biochem 137:380–388

    Google Scholar 

  12. Black D, Duncan A, Robins SP (1988) Quantitative analysis of the pyridinium crosslinks in urine using ion-paired reversedphase high-performance liquid chromatography. Anal Biochem 169:197–203

    Google Scholar 

  13. Kollerup G, Thamsborg G, Bathia H, Sorensen OH (1992) Quantitation of urinary hydroxypyridium cross-links in collagen by high-performance liquid chromatography. Scand J Clin Lab Invest 52:657–662

    Google Scholar 

  14. Hyldstrup L, Clemmensen I, Jensen BA, Transbøll I (1988) Non-invasive evaluation of bone formation: measurements of serum alkaline phosphatase, whole body retention of diphosphonate and serum osteocalcin in metabolic bone disorders and thyroid disease. Scand J Clin Lab Invest 48:611–619

    Google Scholar 

  15. Melkko J, Niemi S, Risteli L, Risteli J (1990) Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin Chem 36:1328–1332

    Google Scholar 

  16. Thamsborg G, Storm TL, Daugaard H, Schifter S, Sorensen OH (1991) Circulating levels of calciotropic hormones during treatment with nasal salmon calcitonin Acta Endocrinol (Copenh) 125:127–131

    Google Scholar 

  17. Reginster JY, Denis D, Albert A, Franchimont P (1987) Assessment of the biological effectiveness of nasal synthetic salmon calcitonin (SSCT) by comparison with intramuscular (i.m.) or placebo injection in normal subjects. Bone Miner 2:133–140

    Google Scholar 

  18. Pontiroli AE, Alberetto M, Pozza G (1985) Intranasal calcitonin and plasma calcium concentrations in normal subjects. Br Med J 290:1390–1391

    Google Scholar 

  19. Gennari C, Chierichetti SM, Vibelli C, Francini G, Maioli E, Gonnelli S (1981) Acute effects of salmon, human and porcine calcitonin on plasma calcium and cyclic AMP levels in man. Curr Ther Res 30:1024–1032

    Google Scholar 

  20. Markowitz M, Rotkin L, Rosen JF (1981) Circadian rhythms of blood minerals in human. Science 312:672–674

    Google Scholar 

  21. Kawashima H, Torikai S, Kurokawa K (1987) Calcitonin selectively stimulates 25-hydroxyvitamin D3-lalfa-hydroxylase in proximal tubule of rat kidney. Nature 291:327–329

    Google Scholar 

  22. Galante L, Colston KW, MacAuley SJ, MacIntyre I (1972) Effect of calcitonin on vitamin D metabolism. Nature 238:271–273

    Google Scholar 

  23. Jaeger P, Jones W, Clemens TL, Hayslett JP (1986) Evidence that calcitonin stimulates 1,25-dihydroxyvitamin D production and intestinal absorption of calcium in vivo. J Clin Invest 78:451–461

    Google Scholar 

  24. Emmertsen K, Melsen F, Mosekilde L, Lund Bi, Lund Bj, Sørensen OH, Nielsen HE, Sølling H, Hansen H (1981) Altered vitamin D metabolism and bone remodeling in patients with thyroid carcinoma and hypercalcitoninemia. Metab Bone Dis Rel Res 4:17–23

    Google Scholar 

  25. Charles P, Poser JW, Mosekilde L, Jensen FT (1985) Estimation of bone turnover evaluated by47Ca-kinetics. J Clin Invest 76:2254–2258

    Google Scholar 

  26. Klein L, Lafferty FW, Pearson OH, Curtiss PH (1964) Correlation of urinary hydroxyproline, serum alkaline phosphatase and skeletal calcium turnover. Metabolism 13:272–283

    Google Scholar 

  27. Estell R, Hampton L, Colwell A, Green JR, Assiri AMA, Hesp R, Russell RGG, Reeve J (1990) Urinary collagen crosslinks are highly correlated with radioisotopic measurements of bone re sorption. In: Christiansen C, Overgard K (eds) Osteoporosis 1990. Osteopress Aps, Copenhagen, pp 469–470

    Google Scholar 

  28. Delmas PD, Schlemmer A, Gineyts E, Riis B, Christiansen C (1991) Urinary excretion of pyridinoline crosslinks correlates with bone turnover measured on iliac crest biopsy in patients with vertebral osteoporosis. J Bone Miner Res 6:639–644

    Google Scholar 

  29. Delmas PD, Malaval L, Arlot ME, Meunier PJ (1985) Serum bone gla-protein compared to bone histomorphometry in endocrine diseases. Bone 6:339–341

    Google Scholar 

  30. Risteli J, Melkko J, Niemi S, Risteli L (1991) Use of a marker of collagen formation in osteoporosis studies. Calcif Tissue Int (suppl) 49:S24-S25

    Google Scholar 

  31. Thamsborg G, Storm TL, Brinch E, Sykulski R, Fogh-Andersen N, Sorensen OH (1990) The effect of different doses of nasal salmon calcitonin on plasma cyclic AMP and serum ionized calcium. Calcif Tissue Int 46:5–8

    Google Scholar 

  32. Lewitt M, McDowall D, Clifton-Bligh P, Marel G, Hooper MJ (1987) The effect of nasal administration of synthetic salmon calcitonin. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress Aps, Copenhagen, pp 925–927

    Google Scholar 

  33. Schlemmer A, Hassager C, Jensen SB, Christiansen C (1992) Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 74:476–180

    Google Scholar 

  34. Tilyard MW, Spears GFS, Thomson J, Dovey S (1992) Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–362

    Google Scholar 

  35. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OLM, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FIFE, Potss JT (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 280:1340–1344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamsborg, G., Skousgaard, S.G., Daugaard, H. et al. Acute effects of nasal salmon calcitonin on calcium and bone metabolism. Calcif Tissue Int 53, 232–236 (1993). https://doi.org/10.1007/BF01320907

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320907

Key words

Navigation