Skip to main content
Log in

Investigation of water electrolysis by spectral analysis. I. Influence of the current density

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The potential (or current) fluctuations observed under current (or potential) control during gas evolution were analysed by spectral analysis. The power spectral densities (psd) of these fluctuations were measured for hydrogen and oxygen evolution in acid and alkaline solutions at a platinum disk electrode of small diameter. Using a theoretical model, some parameters of the gas evolution were derived from the measured psd of the potential fluctuations, such as the average number of detached bubbles per time unit, the average radius of the detached bubbles and the gas evolution efficiency. The influence of the electrolysis current on these parameters was also investigated. The results of this first attempt at parameter derivation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Tafel coefficient (V−1), Equation 46

C :

electrode double layer capacity (F)

e :

gas evolution efficiency (%)

f :

frequency (Hz)

f p :

frequency of the peak in the psd ψv and ψi (Hz)

F :

Faraday constant, 96 487 C mol−1

l :

electrolysis current (A)

J :

electrolysis current density (mA cm−2)

k :

slope of the linear potential increase (V s−1), see Fig. 1

n :

number of electrons involved in the reaction to form one molecule of the dissolved gas

r b :

radius of a spherical glass ball (m)

r e :

radius of the disk electrode (m)

R e :

electrolyte resistance (Ω)

R p :

polarization resistance (Ω)

R t :

charge transfer resistance (Ω)

u 1 :

distribution function of the time intervals between two successive bubble departures (s−1)

v g :

mean volume of gas evolved per unit time (m3 s−1)

v t :

gas equivalent volume produced in molecular form per unit time (m3 s−1)

V 0 :

gas molar volume, 24.5×10−3 m3 at 298 K

x 0 :

time pseudoperiod of bubbles evolution (s)

Z :

electrode electrochemical impedance (Ω)

αe :

dimensionless proportional factor (Equation 19)

β:

slope of log λ/logJ and loge/logJ curves

λ:

number of bubbles evolved per unit time (s−1)

η a :

activation overpotential (V)

η ci :

concentration overpotential of reacting ionic species (V)

η cs :

concentration overpotential of dissolved molecular gas (V)

η ohm :

ohmic overpotential (V)

η t :

total overpotential (V)

v :

parameter characteristic of the gas evolution pseudoperiodicity, Equation 13 (s−1)

τ:

time constant of the double layer capacity change (s)

ψ v :

power spectral density (psd) of the potential fluctuations (V2 Hz−1)

ψ i :

power spectral density (psd) of the current fluctuations (A2 Hz−1)

\(\bar \eta _j \) :

spatial average of the overpotentialη j over the electrode surface

\(\overline {\eta _{j, o} } \) :

time averaged value of\(\bar \eta _j \)

Δη j :

fluctuation of\(\bar \eta _j \) around\(\overline {\eta _{j, o} } \)

<Δη>:

mean value of the total overpotential jump amplitude due to a bubble departure

I>:

mean value of the current jump amplitude due to a bubble departure

References

  1. H. Vogt, in ‘A Comprehensive Treatise on Electrochemistry’ (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangapani), Plenum Press, New York (1981) Vol. 6, pp. 471–473.

    Google Scholar 

  2. L. J. J. Janssen and E. Barendrecht,Electrochim. Acta 28 (1983) 341.

    Google Scholar 

  3. A. T. Kuhn and M. Stevenson,Electrochim. Acta 27 (1982) 329.

    Google Scholar 

  4. F. Hine, M. Yasuda, R. Nakamura and T. Noda,J. Electrochem. Soc. 122 (1975) 1185.

    Google Scholar 

  5. J. A. Leistra and P. J. Sides,J. Electrochem. Soc. 134 (1987) 2442.

    Google Scholar 

  6. J. Dukovic and C. W. Tobias,J. Electrochem. Soc. 134 (1987) 331.

    Google Scholar 

  7. F. Job, PhD Thesis, Université de Grenoble, France (1979).

  8. C. Gabrielli, F. Huet and M. Keddam,J. Appl. Electrochem. 15 (1985) 503.

    Google Scholar 

  9. C. Gabrielli, F. Huet, M. Keddam, A. Macias and A. Sahar,J. Appl. Electrochem. submitted.

  10. A. Sahar, PhD Thesis, Université de Paris VI, France (1988).

  11. C. Gabrielli, F. Huet, M. Keddam and A. Sahar, to be published.

  12. C. Gabrielli, F. Huet and M. Keddam, to be published.

  13. H. J. Larson and B. O. Shubert, ‘Probabilistic Models in Engineering Science, Vol. II, Random Noise, Signals and Dynamic Systems', Wiley, New York (1979).

    Google Scholar 

  14. C. Heiden,Phys. Rev. 188 (1969) 319.

    Google Scholar 

  15. C. Gabrielli, F. Huet and M. Keddam,Electrochim. Acta 31 (1986) 1025.

    Google Scholar 

  16. L. J. J. Janssen, C. W. M. P. Sillen, E. Barendrecht and S. J. D. Van Stralen,Electrochim. Acta 29 (1984) 633.

    Google Scholar 

  17. J. M. Chin Kwie Joe, L. J. J. Janssen, S. J. D. Van Stralen, J. H. G. Verbunt and W. M. Sluyter,Electrochim. Acta 33 (1988) 769.

    Google Scholar 

  18. H. Vogt,Electrochim. Acta. 29 (1984) 167.

    Google Scholar 

  19. F. Huet, PhD Thesis, Université de Paris VI, France (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielli, C., Huet, F., Keddam, M. et al. Investigation of water electrolysis by spectral analysis. I. Influence of the current density. J Appl Electrochem 19, 683–696 (1989). https://doi.org/10.1007/BF01320643

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320643

Keywords

Navigation