Skip to main content
Log in

Electrode current distribution in a hypochlorite cell

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical production of gases, e.g. Cl2, H2 and O2, is generally carried out in vertical electrolysers with a narrow electrode gap. The evolution of gas bubbles, on one hand, speeds up the mass transport; on the other it increases the solution resistance and also the cell potential. The gas void fraction in the cell increases with increasing height and, consequently, the current density is expected to decrease with increasing height. Insight into the effects of various parameters on the current distribution and the ohmic resistance in the cell is of the utmost importance in understanding the electrochemical processes at gas-evolving electrodes. An example of the described phenomena is the on-site production of hypochlorite by means of a vertical cell. Experiments were carried out with a working electrode consisting of 20 equal segments and an undivided counter electrode. It has been found that the current distribution over the anode is affected by various electrolysis parameters. The current density,j, decreased linearly with increasing distance,h, from the leading edge of the electode. The absolute value of the slope of theI/h straight line increased with increasing average current density and temperature, and with decreasing velocity of the solution, NaCl concentration and interelectrode gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a 1 :

constant

b a :

anodic Tafel slope (V)

b c :

cathodic Tafel slope (V)

B :

current distribution factor

B 0 :

current distribution factor att e=0

c NaCl :

sodium chloride concentration (kmol m−3)

dwt :

interelectrode gap (mm)

h :

distance from the leading edge of the segmented electrode (m)

H :

total height of the segmented electrode (m)

I :

current (A)

I s :

current through a segment (A)

j 0 :

exchange current density (kA m−2)

j av :

mean current density (kA m−2)

j t :

current density at the top of the segmented electrode (h=H) (kA m−2)

j b :

current density at the bottom of the segmented electrode (h=0) (kA m−2)

n s :

number of a segment of the segmented electrode from its leading edge

R s :

unit surface resistance of solution (Ω m2)

R s, b :

unit surface resistance of solution at the bottom of the segmented electrode (Ω m2)

R s, t :

unit surface resistance of solution at the top of the segmented electrode (Ω m2)

t e :

time of electrolysis (h)

T :

temperature (K)

U c :

cell voltage (V)

U 0 :

reversible cell voltage (V)

v 0 :

solution flow rate of the bulk solution in the cell at the level of the leading edge of the electrode (m s−1)

ϱ:

resistivity of the solution (Ω m)

η a :

anodic overpotential (V)

η c :

cathodic overpotential (V)

ε:

gas void fraction

εb :

gas void fraction ath=0

εt :

gas void fraction ath=H

References

  1. N. Ibl and H. Vogt, in ‘Comprehensive Treatise of Electrochemistry,’ Plenum Press, New York (1981) Vol. 2, p. 173 ff.

    Google Scholar 

  2. N. Ibl and D. Landolt,Electrochim Acta 15 (1970) 1165.

    Google Scholar 

  3. O. Schwarzer and R. Landsberg,J. Electroanal. Chem. 19 (1968) 405.

    Google Scholar 

  4. J. A. Harrison and Z. A. Khan,J. Electroanal. Chem. 30 (1971) 87.

    Google Scholar 

  5. E. Mueller,Z. Electrochem 5 (1899) 469.

    Google Scholar 

  6. F. Förster, Elektrochemie wässriger Lösungen, J. Ambrosius Barth, Leipzig (1923) 598.

    Google Scholar 

  7. B. B. E. Bongenaar-Schlenter, Thesis, Eindhoven (1985).

  8. J. M. Alice, B. K. Sadanada Rao and G. Venkatamoran,Indian. Chem. Eng. 28 (1986) 49.

    Google Scholar 

  9. J. M. Chin Kwie Joe, L. J. J. Janssen, S. J. van Stralen, J. H. G. Verbunt and W. H. Sluyter,Electrochim Acta 33 (1988) 769.

    Google Scholar 

  10. H. Vogt,Electrochim. Acta 28 (1983) 314.

    Google Scholar 

  11. C. W. M. P. Sillen, Thesis, Eindhoven (1983).

  12. G. R. Heal, A. T. Kuhn and R. B. Lartey,J. Electrochem. Soc. 124 (1977) 1690.

    Google Scholar 

  13. L. J. J. Janssen and E. Barendrecht, in ‘Modern Chlor-Alkali Technology’ (edited by K. Wall), Chichester (1986) Vol. 3, p. 430.

  14. H. M. Gijsbers and L. J. J. Janssen, to be published.

  15. L. Czarnetzki and L. J. J. Janssen,Electrochim. Acta 33 (1988) 561.

    Google Scholar 

  16. R. E. de la Rue and C. W. Tobias,J. Electrochem. Soc. 106 (1959) 827.

    Google Scholar 

  17. E. W. Washburn (editor), ‘International Critical Tables,’ McGraw-Hill, New York (1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnetzki, L.R., Janssen, L.J.J. Electrode current distribution in a hypochlorite cell. J Appl Electrochem 19, 630–636 (1989). https://doi.org/10.1007/BF01320637

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320637

Keywords

Navigation