Skip to main content
Log in

Potential drops due to an attached bubble on a gas-evolving electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

It is shown how the various components of the overpotential due to an attached bubble on an electrode can be separated and estimated. By considering the resistance increments due to the presence on the electrode surface of a bubble, obtained from impedance measurements, it is possible to determine the predominant potential distribution which controls the gas evolution. A relationship between the measured overpotential and the diameter of the bubble is established. The time evolution of the overpotential due to a growing bubble is modelled in the case of the limitation of the bubble growth by dissolved gas diffusion in the solution. In agreement with previous experimental results a linear time variation is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b b,b f :

Tafel coefficients (V−1) Equation A7

δc :

difference between the supersaturation and saturation concentrations (mol m−3)

C :

electrode double layer capacity (F)

C 0 :

electrode double layer capacity per surface unit (F m−2)

C A,C B :

concentrations of species A and B in the redox system (mol m−3)

d b :

diameter of a bubble or a sphere on the electrode (m)

d e :

diameter of the disc electrode (m)

D :

diffusion coefficient of the dissolved gas (m2 s−1)

E :

electrode potential (V)

E z :

zero-charge potential of the electrode (V)

F :

Faraday constant, =96487 C mol−1

I :

electrolysis current (A)

I F :

faradaic current (A)

k b,k f :

heterogeneous rate constants of the redox reaction (m s−1)

k 1 :

slope of ΔV/t curve (V s−1), Equation 5

k 2 :

slope of ΔV/t 2/3 curve (V s−2/3), Equation 5

K :

Henry coefficient, Equation 1

n :

number of the electrons involved in the reaction to form one molecule of the dissolved gas

Q :

electrical charge of the electrode double layer (C)

r b :

radius of a bubble or of a sphere on the electrode (m)

R e :

electrolyte resistance (Ω)

R e0 :

electrolyte resistance for an electrode of 1 m in diameter (Ωm), Equation 32

R p :

polarization resistance (Ω)

R p0 :

polarization resistance per surface unit (Ω m−2)

R t :

charge-transfer resistance (Ω)

s :

relative rate of variation of the electrode active surface due to a growing bubble (s−1)

S :

disk electrode surface (m2)

ΔS e, ΔS p :

equivalent screened surfaces by a bubble or a sphere given byR e andR p changes (m2), Equations 18 and 29

t :

time (s)

V :

potential difference between the working and the reference electrodes (V)

V 0 :

gas molar volume: 24.5×10−3 m3 at 298 K

ΔV :

total overpotential increment due to a bubble or a sphere (V)

ΔV a, ΔV ohm :

activation and ohmic overpotential increments due to a bubble or a sphere (V)

α:

slope of log ΔV/logI curve, Equation 11

αe, αp :

dimensionless parameters in Equations 27 and 30

β:

dimensionless coefficient in Scriven law, Equation 2

η t :

total overpotential (V)

η a,η c,η ohm :

spatial averages of the activation, concentration and ohmic overpotentials over the electrode surface (V)

ϱ:

electrolyte density (kg m−3)

i:

in the absence of the growing bubble

References

  1. S. Shibata,Electrochim. Acta 23 (1978) 619.

    Google Scholar 

  2. S. Shibata,Bull. Chem. Soc. Japan 33 (1960) 1635.

    Google Scholar 

  3. H. Vogt,Electrochim. Acta 29 (1984) 167.

    Google Scholar 

  4. H. Vogt,Electrochim. Acta 25, (1980) 527.

    Google Scholar 

  5. Lord Rayleigh,Phil. Mag. 34 (1917) 94.

    Google Scholar 

  6. D. E. Westerheide and J. W. Westwater,AIChE J. 7 (1961) 357.

    Google Scholar 

  7. N. P. Brandon and G. H. Kelsall,J. Appl. Electrochem. 15 (1985) 475.

    Google Scholar 

  8. L. E. Scriven,Chem. Eng. Sci. 10 (1959) 1.

    Google Scholar 

  9. S. Van Stralen, R. De Jonge and H. Verhaart, in ‘Boiling Phenomena,’ Vol. 1 (edited by S. Van Stralen and R. Cole), McGraw Hill, New York (1979) Ch. VI.

    Google Scholar 

  10. R. Darby and M. Haque,Chem. Eng. Sci. 28 (1973) 1129.

    Google Scholar 

  11. K. J. Vetter, ‘Electrochemical Kinetics, Theoretical and Experimental aspects’ (edited by S. Brückenstein and B. Howard), Academic Press, New York (1967).

    Google Scholar 

  12. J. A. Leistra and P. J. Sides,J. Electrochem. Soc. 134 (1987) 2442.

    Google Scholar 

  13. J. Dukovic and C. W. Tobias,J. Electrochem. Soc. 134 (1987) 331.

    Google Scholar 

  14. C. Gabrielli, F. Huet, M. Keddam and A. Sahar,J. Appl. Electrochem 19 (1989) 683.

    Google Scholar 

  15. C. Gabrielli, F. Huet, M. Keddam,J. Appl. Electrochem. 15 (1985) 503.

    Google Scholar 

  16. C. Gabrielli, F. Huet, M. Keddam and J. F. Lizee,J. Electroanal. Chem. 138 (1982) 201.

    Google Scholar 

  17. J. P. Glas and J. W. Westwater,Int. J. Heat Mass Transfer 7 (1964) 1427.

    Google Scholar 

  18. J. J. Miksis and J. Newman,J. Electrochem. Soc. 123 (1976) 1030.

    Google Scholar 

  19. P. J. Sides and C. W. Tobias,J. Electrochem. Soc. 127 (1980) 288.

    Google Scholar 

  20. A. Sahar, PhD Thesis, Université de Paris IV (1988).

  21. C. Gabrielli, F. Huet, M. Keddam and A. Macias, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielli, C., Huet, F., Keddam, M. et al. Potential drops due to an attached bubble on a gas-evolving electrode. J Appl Electrochem 19, 617–629 (1989). https://doi.org/10.1007/BF01320636

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320636

Keywords

Navigation