Skip to main content
Log in

Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products fromEudistoma olivaceum

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The surface of the colonial ascidianEudistoma olivaceum (Van Name) is almost completely free of fouling organisms. I provide evidence that this epibiont-free surface is maintained by the alkaloids, Eudistomins G and H. These alkaloids were extracted from colonies collected in the shallow subtidal of Indian River Lagoon, Florida. USA, in November 1987. Concentrations of less than one-fifth of those found in the living ascidian inhibited the settlement of the larvae of five invertebrate species relative to appropriate controls in laboratory and field trials. Standard pharmacological assays have revealed that Eudistomins G and H were not the most biologically active of the eudistomins, indicating that these standard assays are not necessarily good predictors of antifouling activity. In an examination of possible alternate roles for these eudistomins, they proved ineffective as a fish antifeedant. PinfishLagadon rhomboides consumed agar pellets to which Eudistomins G and H had been added at concentrations 10- to 100-fold higher than those effective against settling larvae. These findings indicate that biologically active marine natural products may serve specific ecological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aiello, A., Fattorusso, E., Magno, S., Mayol, L. (1987). Brominatedβ-carbolines from the marine hydoidAglaophelia pluma Linnaeus. Tetrahedron 43: 5929–5932

    Google Scholar 

  • Barthel, D., Wolfrath, B. (1989). Tissue sloughing in the spongeHalichondria panicea: a fouling organism prevents being fouled. Oecologia 78: 357–360

    Google Scholar 

  • Blunt, J., Lake, R., Munroe, M. (1987). The stereochemistry of eudistomins C, K, E, F and L. Tetrahedron Lett. 28: 1825–1826

    Google Scholar 

  • Davis, A. R. (1987). Variation in recruitment of the subtidal colonial ascidianPodoclavella cylindrica (Quoy & Gaimard): the role of substratum choice and early survival. J. exp. mar. Biol. Ecol. 106: 57–71

    Google Scholar 

  • Davis, A. R., Targett, N. M., McConnell, O.J., Young, C. M. (1989). Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer P. J. (ed.) Bioorganic marine chemistry. Vol. 3. Springer-Verlag, Berlin, Heidelberg, New York, p. 85–114

    Google Scholar 

  • Davis, A. R., Wright, A. E. (1989). Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum andE. capsulatum). Is surface acidity an effective defense? Mar. Biol. 102: 491–497

    Google Scholar 

  • Davis, A. R., Wright, A. E. (1990). Inhibition of larval settlement by natural products from the ascidian,Eudistoma olivaceum (Van Name). J. chem. Ecol. 16: 1349–1357

    Google Scholar 

  • Dyrynda, P. E. J. (1986). Defensive strategies of modular organisms. Phil. Trans. R. Soc. (Ser. B) 313: 227–243

    Google Scholar 

  • Fenical, W. (1982). Natural products chemistry in the marine environment. Science, N. Y. 215: 923–928

    Google Scholar 

  • Hay, M. E., Fenical, W., Gustafson, K. (1987). Chemical defense against diverse coral-reef herbivores. Ecology 68: 1581–1591

    Google Scholar 

  • Jackson, J. B. C., Buss, L. (1975). Allelopathy and spatial competition among coral reef invertebrates. Proc. natn. Acad. Sci. U.S.A. 72: 5160–5163

    Google Scholar 

  • Kinzer, K. F., Cardellina, J. H. (1987). Three newβ-carbolines from the Bermudian tunicateEudistoma olivaceum. Tetrahedron Lett. 28: 925–926

    Google Scholar 

  • Kobayashi, J., Harbour, G. C. Gilmore, J. Rinehart, K. L. (1984). Eudistomins A, D, G, H, I, J, M, N, O, P and Q, bromo-, hydroxy-, pyrrolyl-, and 1-pyrrolinyl-β-carbolines from the antiviral Caribbean tunicateEudistoma olivaceum. J. Am. chem. Soc. 106: 1526–1528

    Google Scholar 

  • Marchand, J. (1946). DDT as a marine fouling agent. Science, N.Y. 104: 74–75

    Google Scholar 

  • Munroe, M. H. G., Luibrand, R. T., Blunt, J. W. (1987). The search for antiviral and anticancer compounds from marine organisms. In: Scheuer, P. J. (ed.) Bioorganic marine chemistry. Vol 1. Springer-Verlag, Berlin, Heidelberg, New York, p. 93–176

    Google Scholar 

  • Patton, W. K. (1972). Studies on the animal symbionts of the gorgonian coralLeptogorgia virgulata (Lamarck). Bull. mar. Sci. 22: p. 419

    Google Scholar 

  • Porter, J. W., Targett, N. M. (1988). Allelochemical interactions between sponges and corals. Biol. Bull. mar. biol. Lab., Woods Hole 175: 230–239

    Google Scholar 

  • Rinehart, K. L., Kobayashi, J., Harbour, G. C., Gilmore, J. Mascal, M., Holt, T. G., Shield, L. S., Lafargue, F. (1987). Eudistomins A–Q,β-carbolines from the antiviral Caribbean tunicateEudistoma olivaceum. J. Am. chem. Soc. 109: 3378–3387

    Google Scholar 

  • Rinehart, K. L., Kobayashi, J., Harbour, G. C., Hughes, R. G., Mizsak, S. A., Scahill, T. A. (1984). Eudistomins C. E. K. and L, potent antiviral compounds containing a novel oxathiapine ring from the Caribbean tunicateEudistoma olivaceum. J. Am. chem. Soc. 106: 1524–1526

    Google Scholar 

  • Rittschof, D., Hooper, I. R., Costlow, J. D. (1988). Settlement inhibition of marine invertebrate larvae: comparison of sensitivities of bryozoan and barnacle larvae. In: Thompson, M.-F., Sorojini, R., Nagabhushanam, R. (eds.) Marine biodeterioration. Oxford & IBH Publishing Co., New Delhi, p. 599–608

    Google Scholar 

  • Rublee, P. A., Lasker, H. R. Gottfried, M., Roman, M. R. (1980). Production and bacterial colonization of mucus from the soft coralBriarium asbestinum. Bull. mar. Sci. 30: 888–893

    Google Scholar 

  • Scheuer, P. J. (1978–1983). Marine natural products: chemical and biological perspectives. Vols 1–5. Academic Press, New York

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Sullivan, B., Faulkner, D. J., Webb, L. (1983). Siphonodictidine, a metabolite of the burrowing spongeSiphonodictyon sp. that inhibits coral growth. Science, N.Y. 221: p. 1175

    Google Scholar 

  • Targett, N. M. (1988). Allelochemistry in marine organisms: chemical fouling and antifouling strategies. In: Thompson, M. E., Sorojini, R., Nagabhushanam, R. (eds.) Marine biodeterioration. Oxford & IBH Publishing Co., New Delhi, p. 609–617

    Google Scholar 

  • Tursch, B., Braekman, J. C., Daloze, D., Kaisin, M. (1978). Terpenoids from coelenterates. In: Scheuer, P. J. (ed.) Marine natural products: chemical and biological perspectives. Vol 2. Academic Press, New York, p. 247–296

    Google Scholar 

  • Wisely, B. (1959). Factors influencing the settling of the principal marine fouling organisms in Sydney Harbor. Aust. J. mar. Freshwat. Res. 10: 30–44

    Google Scholar 

  • Young, C. M., Bingham, B. L. (1987). Chemical defense and aposematic coloration in larvae of the ascidianEcteinascidia turbinata. Mar. Biol. 96: 539–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, A.R. Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products fromEudistoma olivaceum . Mar. Biol. 111, 375–379 (1991). https://doi.org/10.1007/BF01319409

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319409

Keywords

Navigation