Marine Biology

, Volume 109, Issue 2, pp 197–202 | Cite as

Age determination of orange roughy,Hoplostethus atlanticus (Pisces: Trachichthyidae) using210Pb:226Ra disequilibria

  • G. E. Fenton
  • S. A. Short
  • D. A. Ritz


Natural levels of210Pb:226Ra in otoliths of orange roughy,Hoplostethus atlanticus, from south-east Australian waters, were measured to determine fish ages radiometrically. Up to maturity, radiometric age estimates were consistent with a single constant otolith growth rate. Radiometric ages for juveniles were comparable with, but greater than, those obtained in a recent, validated New Zealand study which employed counts of annuli on the surface of otoliths. Beyond maturity, radiometric ages were obtained by modelling with an otolith growth rate set at 45% of the juvenile rate. Radiometric ageing confirms that orange roughy is very slow-growing, with an age at maturity (32 cm standard length, SL) of ~ 32 yr, and is very long-lived, with fish 38 to 40 cm being 77 to 149 yr old. These results have important implications for the management of the fishery.


Growth Rate Important Implication Standard Length Natural Level Juvenile Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Beamish, R. J. (1979). New information on the longevity of Pacific Ocean perch (Sebastes alutus). J. Fish. Res. Bd Can. 36: 1395–1400Google Scholar
  2. Beamish, R. J., McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Trans. Am. Fish. Soc. 112: 735–743Google Scholar
  3. Beamish, R. J., McFarlane, G. A. (1987). Current trends in age determination methodology. In: Summerfelt, R. C., Hall, G. E. (eds.) The age and growth of fish. The Iowa State University Press, Ames, Iowa, p. 15–42Google Scholar
  4. Bennett, J. T., Boehlert, G. W., Turekian, K. K. (1982). Confirmation of longevity inSebastes diploproa (Pisces: Scorpaenidae) from210Pb/226Ra measurements in otoliths. Mar. Biol. 71: 209–215Google Scholar
  5. Boehlert, G. W. (1985). Using objective criteria and multiple regression models for age determination in fishes. Fish. Bull. U.S. 83: 103–117Google Scholar
  6. Campana, S. E., Zwanenburg, K. C. T., Smith, J. N. (1990).210Pb/226Ra determination of longevity in redfish. Can. J. Fish. aquat. Sciences 47: 163–165Google Scholar
  7. Fenton, G. E., Ritz, D. A., Short, S. A. (1990).210Pb/226Ra disequilibria in otoliths of blue grenadierMacruronus novaezelandiae: problems associated with radiometric ageing. Aust. J. mar. Freshwat. Res. 41: 467–473Google Scholar
  8. Gauldie, R. W. (1987). The fine structure of check rings in the otolith of the New Zealand orange roughy (Hoplostethus atlanticus). N. Z. Jl mar. Freshwat. Res. 21: 261–274Google Scholar
  9. Gauldie, R. W. (1988a). Microscopic growth increments in the otolith of orange roughy (Hoplostethus atlanticus) and their potential use in studies of growth, recruitment and otolith structure. (Unpublished manuscript held at Fisheries Research Centre, New Zealand Ministry of Agriculture and Fisheries, Wellington)Google Scholar
  10. Gauldie, R. W. (1988b). The effect of surface sculpturing on the interpretation of opaque and hyaline zones in the orange roughy otolith. J. appl. Ichthyol. 4: 140–146Google Scholar
  11. Gauldie, R. W. (1990). Phase differences between check ring locations in the orange roughy otolith (Hoplostethus atlanticus). Can. J. Fish. aquat. Sciences 47: 760–765Google Scholar
  12. Kalish, J. M. (1989). Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. exp. mar. Biol. Ecol. 132: 151–178Google Scholar
  13. Kotylar, A. N. (1980). Age and growth of the bigheadsHoplostethus atlanticus andH. mediterraneus. In: Fishes of the open ocean. Institute of Oceanology, Academy of Sciences USSR, Moscow, p. 66–88Google Scholar
  14. Lester, R. J. G., Sewell, K. B., Barnes, A., Evans, K. (1988). Stock discrimination of orange roughy,Hoplostethus atlanticus, by parasite analysis. Mar. Biol. 99: 137–143Google Scholar
  15. Linkowski, T. B., Liwoch, M. (1986). Variations in the morphology of orange roughyHoplostethus atlanticus (Trachichthyidae) otoliths from New Zealand waters. Pr. morsk. Inst. ryb. Gdyni 21: 43–59 (Rep. Sea Fish. Inst. Gdynia)Google Scholar
  16. Lyle, J., Evans, K. R., Wilson, M. A. (1989b). A summary of orange roughy biological information: 1981–1986. Tech. Rep. Div. Sea Fish., Dep. prim. Ind., Tasm. 39: 1–47Google Scholar
  17. Lyle, J., Kitchener, J., Riley, S. (1989a). Orange roughy bonanza off Tasmania. Aust. Fish. 48(12): 20–24Google Scholar
  18. Mace, P. M., Fenaughty, J. M., Coburn, R. P., Doonan, I. J. (1990). Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise. N. Z. Jl mar. Freshwat. Res. 24: 105–119Google Scholar
  19. Ovenden, J. R., Smolenski, A. J., White, R. W. G. (1989). Mitochondrial DNA restriction site variation in Tasmanian populations of orange roughy (Hoplostethus atlanticus) a deep-water marine teleost. Aust. J. mar. Freshwat. Res. 40: 1–9Google Scholar
  20. Pankhurst, N. W., Conroy, A. M. (1987). Size-fecundity relationships in the orange roughyHoplostethus atlanticus. N. Z. Jl mar. Freshwat. Res. 21: 295–300Google Scholar
  21. Pannella, G. (1980). Growth patterns in fish sagittae. In: Rhoads, D. C., Lutz, R. A. (eds.) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York, p. 519–560Google Scholar
  22. Rosecchi, E., Tracey, D. M., Webber, W. R. (1988). Diet of orange roughy,Hoplostethus atlanticus (Pisces: Trachichthydae) on the Challenger Plateau, New Zealand. Mar. Biol. 99: 293–306Google Scholar
  23. Sill, C. W., Olson, D. G. (1970). Sources and prevention of recoil contamination of solid-state alpha detectors. Analyt. Chem. 42: 1569–1607Google Scholar
  24. Van den Broek, W. L. F. (1983). Ageing deepwater fish species: report of a visit to the United Kingdom September–November 1982. Misc. Ser. Fish. Res. Div. Minist. Agric. Fish. (Unpubl. travel Rep., MAF Fisheries, Greta Pt Library, Wellington, N.Z)Google Scholar
  25. Veeh, H. H., Burnett, W. C. (1982). Carbonate and phosphate sediments. In: Ivanovich, M., Harmon, R. S. (eds.) Uranium series disequilibrium: applications to environmental problems. Oxford University Press, New York, p. 459–480Google Scholar
  26. Williams, H. A. (1987). An analysis of orange roughy otoliths. (Unpublished manuscript held at the National Marine Fisheries Service, United States Department of Commerce, Hawaii)Google Scholar
  27. Williams, M. (1989). Orange roughy research in Australia: a case for research co-ordination. Search, Sydney 20: 130–134Google Scholar
  28. Williams, R., Bedford, B. C. (1974). The use of otoliths for age determinations. In: Bagenal, T. (ed.) The ageing of fish. Unwin Brothers, Surrey, England, p. 114–124Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. E. Fenton
    • 1
  • S. A. Short
    • 2
  • D. A. Ritz
    • 1
  1. 1.Zoology DepartmentUniversity of TasmaniaHobartAustralia
  2. 2.Environmental Radiochemistry LaboratoryANSTOMenaiAustralia

Personalised recommendations