Skip to main content
Log in

Lattice dynamics of InSb from phonon imaging

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The ballistic heat flux radiating from a point source of heat in a cold crystal displays a complex pattern of caustics due to phonon focusing. The caustics correspond to folds in the elastic-wave surface of the crystal. The pattern of caustics is independent of phonon frequency unless the phonon wavelength is comparable to the lattice spacing; i.e., for values of wavevectork approaching π/a. We have measured both the shift in the caustic pattern (angular dispersion) and the increasing time-of-flight (velocity dispersion) for ballistic phonons in InSb with wavevectors up to 40% of the Brillouin-zone boundary. Comparison with existing lattice-dynamics models favors the Bond Charge Model (BCM). The phonon-imaging method gives information about theshapes of the wave surfaces which is complementary to the dispersion curves measured only along symmetry directions by neutron scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example Musgrave, M.J.P.: Crystal acoustics. San Fracisco: Holden-Day 1970

    Google Scholar 

  2. Northrop, G.A., Wolfe, J.P.: Phys. Rev. B22, 6196 (1980)

    Google Scholar 

  3. Every, A.G.: Phys. Rev. B24, 3456 (1981)

    Google Scholar 

  4. Tamura, S.: Phys. Rev. B28, 897 (1983)

    Google Scholar 

  5. Northrop, G.A., Wolfe, J.P.: Phys. Rev. Lett.43, 1424 (1979)

    Google Scholar 

  6. Northrop, G.A., Wolfe, J.P.: Proceedings on a NATO Advanced Study Institute of Nonequilibrium Phonon Dynamics, Les Arcs, France 1984. Bron, W.E. (ed.). New York: Plenum Press 1985

    Google Scholar 

  7. Born, M., Huang: Dynamical theory of crystal lattices. New York: Oxford University Press 1954

    Google Scholar 

  8. Brockhouse, B.N.: Inelastic scattering of neutrons in solids and liquids. Vienna: International Atomic Energy Agency 1961; Thermal neutron scattering. Egelstaff, P.A. (ed.) London: Academic Press 1965

    Google Scholar 

  9. Dietsche, W., Northrop, G.A., Wolfe, J.P.: Phys. Rev. Lett.47, 660 (1981)

    Google Scholar 

  10. Northrop, G.A.: Phys. Rev. B26, 903 (1982)

    Google Scholar 

  11. Northrop, G.A., Hebboul, S.E., Wolfe, J.P.: Phys. Rev. Lett.55, 95 (1985)

    Google Scholar 

  12. Hebboul, S.E., Wolfe, J.P.: Phys. Rev. B34, 3948 (1986)

    Google Scholar 

  13. Schreiber, M., Fieseler, M., Mazur, A., Pollman, J., Stock, B., Ulbrich, R.G.: Proceedings of the 18th International Conference on the Physics of Semiconductors. Engström, Olof (ed.), p. 1373. Singapore: World Scientific 1987; Hebboul, S.E., Wolfe, J.P.: p. 1377

    Google Scholar 

  14. Eisenmenger, W., Dayem, A.H.: Phys. Rev. Lett.18, 125 (1967);

    Google Scholar 

  15. Dayem, A.H., Miller, B.I., Wiegand, J.J.: Phys. Rev. B3, 2949 (1971)

    Google Scholar 

  16. Kinder, H.: Proceedings of a NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics. Bron, W.E. (ed.). New York: Plenum Press 1985

    Google Scholar 

  17. Rustagi, K.C., Weber, W.: Solid State Commun.18, 673 (1976)

    Google Scholar 

  18. The undoped InSb crystals were grown by E. Swiggard of the Naval Research Laboratory

  19. Eisenmenger, W.: Physical acoustics, principles and methods. Mason, W.P., Thurston, R.N. (eds.), Vol. 12, p. 79. New York: Academic Press 1976

    Google Scholar 

  20. Huang, H.C.W., Serrano, C.M.: J. Vac. Sci. Technol. A1, 1409 (1983)

    Google Scholar 

  21. Gundlach, K.H., Takada, S., Zahn, M., Hartfusse, H.J.: Appl. Phys. Lett.41, 294 (1982)

    Google Scholar 

  22. Deutscher, G., Gennes, P.G. de: In: Superconductivity. Parks, R.D. (ed.), Vol. 2, p. 1005. New York: Marcel Dekker 1969

    Google Scholar 

  23. Townsend, P., Sutton, J.: Phys. Rev.128, 591 (1962)

    Google Scholar 

  24. Claeson, T., Grimvall, G.: J. Phys. Chem. Solids29, 387 (1968);

    Google Scholar 

  25. Claeson, T.: Phys. Rev.147, 340 (1966)

    Google Scholar 

  26. Adler, J.G., Ng, S.C.: Can. J. Phys.43, 594 (1965)

    Google Scholar 

  27. Giaever, I., Megerle, K.: Phys. Rev.122, 1101 (1961)

    Google Scholar 

  28. Maki, K.: Superconductivity. Parks, R.D. (ed.), Vol. 2, p. 1035. New York: Marcel Dekker 1969

    Google Scholar 

  29. Handbook of Chemistry and Physics. Weast, R.C. (ed.). Boca Raton: CRC Press 1980

    Google Scholar 

  30. McMillan, W.L., Rowell, J.M.: Superconductivity. Parks, R.D. (ed.) Vol. 1, p. 561. New York: Marcel Dekker 1969

    Google Scholar 

  31. Ulbrich, R.G., Narayanamurti, V., Chin, M.A.: Phys. Rev. Lett.45, 1432 (1980); Orbach, R.: Phys. Rev. Lett.16, 15 (1966)

    Google Scholar 

  32. Klemens, P.G.: Proc. Phys. Soc. London68, 113 (1955)

    Google Scholar 

  33. At zero temperature, the onset of tunneling in normal metal-insulator-superconductor junctions occurs atV

  34. Hurley, D.C., Wolfe, J.P.: Phys. Rev. B32, 2568 (1985)

    Google Scholar 

  35. See for example Bevington, P.R.: Data reduction and error analysis for the physical sciences. New York: McGraw-Hill 1969

    Google Scholar 

  36. See the original work by von Gutfeld, R.J., Nethercot, A.H. Jr.: Phys. Rev. Lett.12, 641 (1964)

    Google Scholar 

  37. Huet, D., Maneval, J.P., Zylbersztejn, A.: Phys. Rev. Lett.29, 1092 (1972)

    Google Scholar 

  38. Tamura, S.: Phys. Rev. B32, 5245 (1985)

    Google Scholar 

  39. Bilz, H., Strauch, D., Wehner, R.K.: Encyclopedia of physics. Genzel, L. (ed.), Vol. 25. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  40. For a recent review, see Hanke, W.: Adv. Phys.27, 287 (1978)

    Google Scholar 

  41. Ashcroft, N.W., Mermin, N.D.: Solid state physics. Chap. 22. Saunders College 1976

  42. Kunc, K., Balkanski, M., Nusimovici, M.A.: Phys. Status Solidi B71, 341 (1975);72, 229 (1975)

    Google Scholar 

  43. Kunc, K., Nielson, O.H.: Comput. Phys. Commun.16, 181 (1979)

    Google Scholar 

  44. Borchards, P.H., Kunc, K.: J. Phys. C11, 4145 (1978)

    Google Scholar 

  45. Kunc, K., Nielson, O.H.: Comput. Phys. Commun.17, 413 (1979)

    Google Scholar 

  46. Yip, S.K., Chang, Y.C.: Phys. Rev. B30, 7037 (1984)

    Google Scholar 

  47. Kunc, K., Balkanski, M., Nusimovici, M.A.: Phys. Rev. B12, 4346 (1975)

    Google Scholar 

  48. Tamura, S.: Phys. Rev. B30, 849 (1984)

    Google Scholar 

  49. Hildebrand, F.B.: Introduction to numerical analysis. 2nd Edn., p. 111. New York: McGraw-Hill 1974

    Google Scholar 

  50. Huet, D., Pannetier, B., Ladan, F.R., Maneval, J.P.: J. Phys. (Paris)37, 521 (1976)

    Google Scholar 

  51. Similar plots were also shown in Ref. 4

    Google Scholar 

  52. Price, D.L., Rowe, J.M., Nicklow, R.M.: Phys. Rev. B3, 1268 (1971)

    Google Scholar 

  53. McSkimin, H.J.: IRE Trans. Ultrason. Eng.PGUE-5, 25 (1957)

    Google Scholar 

  54. Weber, W.: Phys. Rev. B15, 4789 (1977)

    Google Scholar 

  55. Weber, W.: Phys. Rev. Lett.33, 371 (1974)

    Google Scholar 

  56. Hebboul, S.E.: Ph.D. Thesis, University of Illinois 1988

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebboul, S.E., Wolfe, J.P. Lattice dynamics of InSb from phonon imaging. Z. Physik B - Condensed Matter 73, 437–466 (1989). https://doi.org/10.1007/BF01319374

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319374

Keywords

Navigation