Skip to main content

Advertisement

Log in

Antiviral effects of different CD4-immunoglobulin constructs against HIV-1 and SIV: immunological characterization, pharmacokinetic data and in vivo experiments

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The CD4 cell surface antigen belongs to the immunoglobulin superfamily and is the primary receptor for the human immunodeficiency virus 1 (HIV-1). The high affinity interaction between HIV-1 and CD4 is mediated by the viral envelope glycoprotein gp120. Recombinant soluble CD4 (rsCD4) has been shown in vitro to be an effective inhibitor of HIV-1 and HIV-2 propagation in lymphoid cells. A variety of antibody-like molecules were constructed, consisting of different parts of the extracellular domain of CD4 fused to immunoglobulin constant regions. The fusion proteins were expressed in mammalian cell lines and purified via affinity chromatography. The specificity and anti-viral effects of the different CD4-immunoglobulin constructs against HIV were analysed by different immunological tests, i.e., immunofluorescence, neutralisation and in vitro assays. In pharmacokinetic studies, differences were found in serum half-life between the four- and two-domain CD4 constructs in cynomolgus monkeys and between glycosylated and deglycosylated CD4-Fc constructs in rabbits. In two in vivo experiments using the four-domain CD4-Fc in SIV-infected macaques, no beneficial effects were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalgleish AG, Beverly PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767

    Google Scholar 

  2. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard J, Guetard D, Hercend T, Gluckman J-C, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768

    Google Scholar 

  3. McDougal JS, Mawle A, Cort SP, Nicholson JKA, Cross GD, Schleppler-Campell JA, Hicks D, Sligh J (1985) Cellular tropism of the human retrovirus HTLV III/LAV 1: role to T cell activation and expression of the T 4 antigen. J Immunol 135: 3151–3162

    Google Scholar 

  4. Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330: 256–259

    Google Scholar 

  5. Gay D, Maddon P, Sekaly R, Talle MA, Godfrey M, Long E, Goldstein G, Chess L, Axel R, Kappler J, Marrack P (1987) Functional interaction between T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature 328: 626–629

    Google Scholar 

  6. Sattentau QJ, Weiss RA (1988) The CD4 antigen: physiological ligand and HIV receptor. Cell 52: 631–633

    Google Scholar 

  7. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T 4 encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348

    Google Scholar 

  8. Lane HC, Fauci AS (1985) Immunologic abnormalities in the acquired immunodeficiency syndrome. Annu Rev Immunol 3: 477–500

    Google Scholar 

  9. Smith DH, Byrn RA, Marsters SA, Gregory T, Groopman JE, Capon DE (1987) Blocking HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238: 1704–1707

    Google Scholar 

  10. Deen KC, McDougal JS, Inacker R, Folena-Wassermann G, Arthos J, Rosenberg J, Maddon P J, Axel R, Sweet R W (1988) A soluble form of CD4 (T 4) protein inhibits AIDS virus infection. Nature 331: 82–84

    Google Scholar 

  11. Fisher RA, Bertonis JM, Meier W, Johnson VA, Costopoulos DS, Liu T, Tizard R, Walker BD, Hirsch MS, Schooley RT, Flavell RA (1988) HIV infection is blocked by recombinant soluble CD4. Nature 331: 76–78

    Google Scholar 

  12. Hussey RE, Richardson NE, Kowalski M, Brown NR, Chang H-C, Siciliano RF, Dorfman T, Walker B, Sodroski J, Reinherz EL (1988) A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 331: 78–81

    Google Scholar 

  13. Traunecker A, Lüke W, Karjalainen K (1988) Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 331: 84–86

    Google Scholar 

  14. Clapham PR, Weber JN, Whitby D, McIntosh K, Dalgleish AG, Maddon PJ, Deen KC, Sweet RW, Weiss RA (1989) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T-cells and monocytes but not for brain and muscle cells. Nature 337: 368–370

    Google Scholar 

  15. Rosenberg M, Bugelski PJ, Fong K-L, Drutz DJ, Sweet R, Webb DD (1990) Soluble recombinant CD4 — a potential therapeutic agent for HIV infection. Biotherapy 2: 107–118

    Google Scholar 

  16. Capon DJ, Chamow SM, Mordenti J, Marsters SA, Gregory T, Mitsuya H, Byrn RA, Lucas C, Wurm FM, Groopmann JE, Broder S, Smith DH (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337: 525–531

    Google Scholar 

  17. Traunecker A, Schneider J, Kiefer H, Karjalainen K (1989) Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 339: 68–70

    Google Scholar 

  18. Zettlmeissl G, Gregersen J-P, Duport JM, Mehdi S, Reiner G, Seed B (1990) Expression and characterization of human CD4: immunoglobulin fusion proteins. DNA Cell Biol 9: 347–353

    Google Scholar 

  19. Sekigawa I, Chamow SM, Groopman JE, Byrn RA (1990) CD4 immunoadhesin, but not recombinant soluble CD4, blocks syncytium formation by human immunodeficiency virus type 2-infected lymphoid cells. J Virol 64: 5194–5198

    Google Scholar 

  20. Watanabe M, Reimann KA, Delong PA, Liu T, Fisher RA, Letvin NL (1989) Effect of recombinant soluble CD4 in rhesus monkeys infected with simian immunodeficiency virus of macaques. Nature 337: 267–270

    Google Scholar 

  21. Zettlmeissl G, Wirth M, Hauser H, Küpper HA (1988) Efficient expression system for human antithrombin III in baby hamster kidney cells. Behring Inst Mitt 82: 26–34

    Google Scholar 

  22. Repke H, Kaufmann R, Ulbricht S, Buchner K, Hucho F, Kalyanaraman VS, Pyle S, Haseltine W, Scholz D, Schmidt HE (1991) Comparative binding-studies reveal a very high-affinity CD4-binding of gp120 released from HIV-1 infected cells. AIDS Res Hum Retroviruses 7: 200–202

    Google Scholar 

  23. Kalyanaraman VS, Rodriguez V, Veronese F, Rahman R, Lusso P, DeVico AL, Copeland T, Oroszlan S, Gallo RC, Sarngadharan MG (1990) Characterization of the secreted, native gp120 and gp160 of the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 6: 371–380

    Google Scholar 

  24. Gregersen JP, Mehdi S, Baur A, Hilfenhaus J (1990) Antibody and complement-mediated lysis of HIV-infected cells and inhibition of viral replication. J Med Virol 30: 287–293

    Google Scholar 

  25. Niedrig M, Gregersen JP, Fultz PN, Bröker M, Mehdi S, Hilfenhaus J (1992) Immune response of chimpanzees after immunization with the inactivated whole immunodeficiency virus (HIV-1), three different adjuvants and challenge. Vaccine (in press)

  26. Reed LJ, Muench HA (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27: 493–498

    Google Scholar 

  27. Gelderblom HR, Hausman EHS, Özel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–176

    Google Scholar 

  28. Fultz PN, McClure HM, Swenson RB, McGrath CR, Brodie A, Getchell JP, Jensen FC, Anderson DC, Borderson JR, Francis DP (1986) Persistent infection of chimpanzees with human T-lymphotrophic virus type III/lymphadenopathy-associated virus: a potential model for acquired immunodeficiency syndrome. J Virol 58: 116–124

    Google Scholar 

  29. Hilfenhaus J, Gregersen JP, Langner KD, Niedrig M, Reiner G, Zettlmeissl G (1991) Biological activities of CD4-immunglobulin fusion proteins: In: Vaccines 91. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 77–83

    Google Scholar 

  30. Byrn RA, Mordenti J, Lucas C, Smith D, Marsters SA, Johnson JS, Cossum P, Chamow SM, Wurm FM, Gregory T, Groopman JE, Capon DJ (1990) Biological properties of a CD4 immunoadhesin. Nature 344: 667–670

    Google Scholar 

  31. Clayton LK, Hussey RE, Steinbrich R, Ramachandran H, Husain Y, Reinherz EL (1988) Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335: 363–366

    Google Scholar 

  32. Landau NR, Warton M, Littman DR (1988) The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334: 159–162

    Google Scholar 

  33. Mizukami T, Fuerst TR, Berger EA, Moss B (1988) Binding region of human immunodeficiency virus (HIV) and epitopes for HIV blocking monoclonal antibodies of the CD4 molecule defined by site directed mutagenesis. Proc Natl Acad Sci USA 85: 9273–9277

    Google Scholar 

  34. Peterson A, Seed B (1988) Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54: 65–72

    Google Scholar 

  35. Arthos J, Deen KC, Chaikin MA, Fornwald JA, Sathe G, Sattentau QJ, Clapham PR, Weiss RA, McDougal JS, Pietropaolo C, Axel R, Truneh A, Maddon PJ, Sweet RW (1989) Identification of the residues in human CD4 critical for the binding of HIV. Cell 57: 469–481

    Google Scholar 

  36. Brodsky MH, Warton M, Myers RM, Littman DR (1990) Analysis of the site in CD4 that binds to the HIV envelope glycoprotein. J Immunol 144: 3078–3086

    Google Scholar 

  37. Gregersen JP, Mehdi S, Gelderblom H, Zettlmeissl G (1990) A CD4: immunoglobulin fusion protein with antiviral effects against HIV. Arch Virol 111: 29–43

    Google Scholar 

  38. Hodges TL, Kahn J, Kaplan L, Volberding P, Bouvier L, Mordenti J, Ammann A, Groopman J, Allan JD (1990) Phase I study of the safety and pharmacokinetics of recombinant human CD4 immunoglobulin (rCD4-IgG) administered by intramuscular (im) injection in patients with AIDS or ARC. In: Abstracts, VIth International Conference on AIDS, San Francisco, USA, SB 478

  39. Yarchoan R, Pluda J, Adamo D, Thomas RV, Mordenti J, Goldspiel BR, Ammann AJ, Broder S (1990) Phase I study of rCD4-IgG administered by continuous intravenous (iv) infusion to patients with AIDS or ARC. In: Abstracts VIth-International Conference on AIDS, San Francisco, USA, SB 479

  40. Collier A, Katzenstein D, Coombs R, Holodniy M, Mordenti J, Arditti D, Ammann A, Merigan T, Corey L (1990) Safety and pharmacokinetics of intravenous recombinant CD4 immunoadhesin (rCD4-IgG) (AIDS clinical trials group protocol 121). In: Abstracts VIth International Conference on AIDS, San Francisco, USA, SB 480

  41. Davey R, Davey V, Polis M, Falloon J, Kovacs J, Zunich K, Ammann A, Metcalf J, Amantea M, Masur H, Fauci A, Lane HC (1990) A phase I trial of recombinant human CD4-immunoglobulin (rCD4-IgG) in HIV-1 infection. In: Abstracts VIth International Conference on AIDS, San Francisco, USA, SB 481

  42. Schooley RT, Merigan TC, Gaut P, Hirsch MS, Holodniy M, Flynn T, Liu S, Byington RE, Henochowicz S, Gubish E, Springgs D, Kaufe D, Schindler J, Dawson A, Thomas D, Hanson DG, Lerwin B, Liu T, Gulinello J, Kennedy S, Fisher R, Ho DD (1990) Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Inter Med 112: 247–253

    Google Scholar 

  43. Daar ES, Li XL, Moudgil T, Ho DD (1990) High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 87: 6574–6578

    Google Scholar 

  44. Ivey-Hoyle M, Culp JS, Chaikin MA, Hellmig BD, Matthews TJ, Sweet RW, Rosenberg M (1991) Envelope glycoproteins from biologically diverse isolates of immunodeficiency viruses have widely different affinities for CD4. Proc Natl Acad Sci USA 88: 512–516

    Google Scholar 

  45. McKeating JA, McKnight A, Moore JP (1991) Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. J Virol 65: 852–860

    Google Scholar 

  46. Ashkenazi A, Smith DH, Marsters SA, Riddle L, Gregory TJ, Ho DD, Capon DJ (1991) Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-gp120 binding affinity. Proc Natl Acad Sci USA 88: 7056–7060

    Google Scholar 

  47. Brighty DW, Rosenberg M, Chen ISY, Ivey-Hoyle M (1991) Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralization by soluble CD4 possess high affinity for the CD4 receptor. Proc Natl Acad Sci USA 88: 7802–7805

    Google Scholar 

  48. Berkower I, Murphy D, Smith G (1991) Noncompetitive inactivation of HIV-1 by rCD4 and CD4-Ig. AIDS Weekly 23: 21

    Google Scholar 

  49. Turner S, Tizard R, DeMarinis J, Pepinsky RB, Zullo J, Schooley R, Fisher R (1992) Resistance of primary isolates of human immunodeficiency virus type 1 to neutralization by soluble CD4 is not due to lower affinity with the viral envelope glycoprotein gp120. Proc Natl Acad Sci USA 89: 1335–1339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langner, K.D., Niedrig, M., Fultz, P. et al. Antiviral effects of different CD4-immunoglobulin constructs against HIV-1 and SIV: immunological characterization, pharmacokinetic data and in vivo experiments. Archives of Virology 130, 157–170 (1993). https://doi.org/10.1007/BF01319004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319004

Keywords

Navigation