Skip to main content
Log in

Two-state system coupled to a boson mode: Quantum dynamics and classical approximations

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The relation between classical and quantum mechanical integrability is investigated for a boson mode coupled to a two-level system. Different semi-classical approximations of this system are considered which are obtained by (i) factorization of expectation values of the two-state variable and the boson, (ii) making a WKB-type approximation, (iii) replacing the boson by a classical field of constant amplitude and fixed frequency and (iv) putting the boson into a self-consistent coherent state. The results vary considerably and include cases of non-integrable and integrable classical dynamics. Quantum mechanically the system is found to satisfy a criterion of quantum mechanical integrability, which we formulate, but the separated Hamiltonian of the boson alone does not have a well-defined classical limit. Numerical results for the energy spectrum and expectation values are obtained, which show a high degree of regularity but also display overlapping avoided crossings usually associated with non-integrable Hamiltonians. The exact dynamics of the occupation probabilities of the two levels is also analysed numerically. The dependence of quantum mechanical recurrence effects (in quantum optics known as revivals) on coupling strength, frequency detuning and initial conditions is studied. The revivals are found to disappear in the case of strong coupling. The Fourier spectra of the dynamical expectation values are also calculated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ford, J.: Adv. Chem. Phys.24, 155 (1973)

    Google Scholar 

  2. Berry, M.V.: In: Topics in nonlinear dynamics. Jorna, S. (ed.). Am. Inst. Phys. Conf. Proc., Vol. 46, p. 16 (1978)

  3. Helleman, R.H.G.: In: Fundamental problems in statistical mechanics. Cohen, E.G.D. (ed.), Vol. 5, p. 165. Amsterdam: North Holland 1980

    Google Scholar 

  4. Chirikov, B.V.: Phys. Rep.52, 263 (1979)

    Google Scholar 

  5. Zaslavski, G.M.: Phys. Rep.80, 157 (1981)

    Google Scholar 

  6. Stochastic behavior in classical and quantum Hamiltonian systems. Casati, G., Ford, J. (eds.). Lecture Notes in Physics. Vol. 93. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  7. Hietarinta, J.: Phys. Lett.93A, 55 (1982)

    Google Scholar 

  8. Jaynes, E.T., Cummings, F.W.: Proc. IEEE51, 126 (1963)

    Google Scholar 

  9. Cohen-Tannoudji, C.: In: Frontiers in Laser spectroscopy. Balian, R., Haroche, S., Liberman, S. (eds.), p. 3. Amsterdam: North Holland 1977

    Google Scholar 

  10. Allen, L., Eberly, J.H.: Optical resonance and two-level atoms. New York: Wiley 1975

    Google Scholar 

  11. Cummings, F.W.: Phys. Rev. A140, 1051 (1965)

    Google Scholar 

  12. Holstein, T.: Ann. Phys. (NY)8, 343 (1959)

    Google Scholar 

  13. Toyozawa, Y.: Prog. Theor. Phys.26, 29 (1961)

    Google Scholar 

  14. Shore, H.B., Sander, L.M.: Phys. Rev. B7, 4537 (1973)

    Google Scholar 

  15. Reik, H.G., Nusser, H., Amarante Ribeiro, L.A.: J. Phys. A15, 3491 (1982)

    Google Scholar 

  16. Schirmer, D.F.: In: The physics of MOS insulators. Lucovsky, G., Pantelides, S.T., Galeener, F.L. (eds.), p. 102. New York: Pergamon 1980

    Google Scholar 

  17. Beloborov, P.I., Zaslavski, G.M., Tartakovski, G.Kh.: Zh. Eksp. Teor. Fiz.71, 1799 (1976)

    Google Scholar 

  18. Milonni, P.W., Ackerhalt, J.R., Galbraith, H.W.: Phys. Rev. Lett.50, 966 (1983)

    Google Scholar 

  19. Graham, R., Höhnerbach, M.: Phys. Lett.101A, 61 (1984) b. Graham, R., Höhnerbach, M.: Acta Phys. Austr. (in press)

    Google Scholar 

  20. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Phys. Rev. Lett.44, 1323 (1980)

    Google Scholar 

  21. Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Phys. Rev. A23, 236 (1981)

    Google Scholar 

  22. Yoo, H.I., Sanchez-Mondragon, J.J., Eberly, J.H.: J. Phys. A14, 1383 (1981)

    Google Scholar 

  23. Hioe, F.T., Yoo, H.I., Eberly, J.H.: In: Coupled nonlinear oscillators. Chandra, J., Scott, A.C. (eds.), Vol. 80. Mathematical Studies. Amsterdam: North Holland 1983

    Google Scholar 

  24. Schweber, S.S.: Ann. Phys.41, 205 (1967)

    Google Scholar 

  25. Autler, S.H., Townes, C.H.: Phys. Rev.100, 703 (1955)

    Google Scholar 

  26. Shirley, J.H.: Phys. Rev. B138, 979 (1965)

    Google Scholar 

  27. Haken, H.: Laser theory. Encyclopedia of Physics. Flügge, S. (ed.), Vol. 25/2C. Berlin, Heidelberg, New York: Springer 1970

    Google Scholar 

  28. Louisell, W.H.: Quantum statistical properties of radiation. New York: Wiley 1973

    Google Scholar 

  29. Abramowitz, M., Stegum, I.A.: Handbook of Mathematical Functions. New York: Dover 1964

    Google Scholar 

  30. Hose, G., Taylor, H.S.: Phys. Rev. Lett.51, 947 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, R., Höhnerbach, M. Two-state system coupled to a boson mode: Quantum dynamics and classical approximations. Z. Physik B - Condensed Matter 57, 233–248 (1984). https://doi.org/10.1007/BF01318416

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01318416

Keywords

Navigation