Skip to main content
Log in

Detection of latent thymidine kinase-deficient herpes simplex virus in trigeminal ganglia of mice using the polymerase chain reaction

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Latency of thymidine kinase-negative mutants of herpes simplex virus (TK HSV) could not be detected by reactivating the virus from the ganglia of infected mice. Because Southern blot hybridization was not sensitive enough to detect viral DNA, positive results obtained by dot blot hybridization were ascertained by the highly specific and sensitive polymerase chain reaction (PCR), which detected both latent TK HSV type 1 and 2 DNA from the trigeminal ganglia of infected mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM (1989) Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA 86: 4736–4740

    Google Scholar 

  2. Darby G, Field HJ, Salisbury SA (1981) Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 289: 81–83

    Google Scholar 

  3. Efstathiou S, Kemp S, Darby G, Minson RC (1989) The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70: 869–879

    Google Scholar 

  4. Field HJ, Wildy P (1978) The pathogenicity of thymidine-kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Cambridge) 81: 267–277

    Google Scholar 

  5. Gordon YJ, Rock DL (1984) Cocultivation versus blot hybridzation for the detection of trigeminal ganglionic latency following corneal inoculation with HSV-1 strains of varying TK expression and pathogenicity. Curr Eye Res 3: 1097–1100

    Google Scholar 

  6. Gordon YJ, Simon PL, Armstrong JA (1984) Neurovirulence of a herpes simplex type 1 thymidine kinase negative mutant determined by biochemical defect and host immune systeme in mice. Arch Virol 80: 225–229

    Google Scholar 

  7. Hampl H (1986) Identifizierung und Charakterisierung der Proteine des Pseudorabiesvirus. Habilitationsschrift der Freien Universität Berlin, Berlin

    Google Scholar 

  8. Klein RJ, Friedman-Kien AE, DeStefano E (1981) Pathogenesis of experimental skin infections induced by drug-resistant herpes simplex virus mutants. Infect Immun 34: 693–701

    Google Scholar 

  9. Leist TP, Sandri-Goldin RM, Stevens JG (1989) Latent infections in spinal ganglia with thymidine kinase-deficient herpes simplex virus. J Virol 63: 4976–4978

    Google Scholar 

  10. Lynas C, Lacock KA, Cook SD, Hill TJ, Blyth WA, Maitland NJ (1989) Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol 70: 2345–2355

    Google Scholar 

  11. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155: 335–350

    Google Scholar 

  12. Perry LJ, Rixon FJ, Everett RD, Frame MC, McGeoch DJ (1986) Characterization of the IE110 gene of herpes simplex virus type 1. J Gen Virol 67: 2365–2380

    Google Scholar 

  13. Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler SL (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826

    Google Scholar 

  14. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Google Scholar 

  15. Schneweis KE, Forstbauer H, Olbrich M, Tag M (1984) Pathogenesis of genital herpes simplex virus infection in mice. III. Comparison of the virulence of wild and mutant strains. Med Microbiol Immunol 173: 187–196

    Google Scholar 

  16. Stevens JG, Cook ML (1971) Latent herpes simplex in spinal ganglia of mice. Science 173: 843–845

    Google Scholar 

  17. Stevens JG, Wagner EK, Devi-Rao JB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus α gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059

    Google Scholar 

  18. Tenser RB, Dunstan ME (1979) Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion. Virology 99: 417–422

    Google Scholar 

  19. Tenser RB, Hay KA, Edris WA (1989) Latency-associated transcript but not reactivable virus is present in sensory ganglion neurons after the inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. J Virol 63: 2861–2865

    Google Scholar 

  20. Wechsler SL, Nesburn AB, Zwagstraa J, Ghiasi H (1989) Sequence of the latency-related gene of herpes simplex virus type 1. Virology 168: 168–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, A., Kleim, J.P. & Schneweis, K.E. Detection of latent thymidine kinase-deficient herpes simplex virus in trigeminal ganglia of mice using the polymerase chain reaction. Archives of Virology 113, 107–113 (1990). https://doi.org/10.1007/BF01318359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01318359

Keywords

Navigation