Archives of Virology

, Volume 48, Issue 2, pp 131–145 | Cite as

The effect of arginine deprivation on the cytopathogenic effect and replication of human cytomegalovirus

  • Helen M. Garnett


Arginine is necessary for the development of the cytopathogenic effect of human cytomegalovirus in human embryonic fibroblasts. It is also required, though in greater concentrations, for the production of infective virions, the requirement being at an early stage of replication. Inhibitor studies suggested that this block in replication caused by arginine deficiency was prior to the formation of viral DNA. Withdrawal of arginine from the medium 24 or 48 hours after infection resulted in a decline in virus production indicating that the continued presence of the amino acid is necessary for constant virus production. Infected cultures deprived of arginine could be stimulated to produce cytopathic effects and infective virions by replacement of the amino acid even eight days after inoculation, demonstrating that the information for cytomegalovirus replication remains intact within the cell. This establishment of latencyin vitro may be related to the ability of the virus to establish a similar statein vivo.


Infectious Disease Infective Virion Arginine Great Concentration Cytopathic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, K. A.: Studies on the DNA dependent RNA polymerase fromEscherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Europ. J. Biochem.5, 143–146 (1968).Google Scholar
  2. 2.
    Archard, L. A., Williamson, J. D.: The effect of arginine deprivation on the replication of vaccinia virus. J. gen. Virol.12, 249–258 (1971).Google Scholar
  3. 3.
    Bablanian, R.: The prevention of early vaccinia-virus-induced cytopathic effects by inhibition of protein synthesis. J. gen. Virol.3, 51–61 (1968).Google Scholar
  4. 4.
    Bablanian, R., Eggers, H. J., Tamm, I.: Studies on the mechanism of polio virus-induced cell damage. 1. The relation between poliovirus growth and virus-induced morphological changes in cells. Virology26, 114–121 (1965).Google Scholar
  5. 5.
    Barros, C., Gindice, G.: Effect of polyamines on ribosomal RNA synthesis during sea urchin development. Exp. Cell Res.50, 671–674 (1968).Google Scholar
  6. 6.
    Becker, P., Melnick, J. L., Mayor, H. D.: A morphological comparison between the developmental stages of herpes zoster and human cytomegalovirus. Exp. molec. path.4, 11–23 (1965).Google Scholar
  7. 7.
    Becker, Y., Olshevsky, U., Levett, J.: The role of arginine in the replication of herpes simplex virus. J. gen. Virol.1, 471–478 (1967).Google Scholar
  8. 8.
    Bonifas, V. H.: Time course and specificity of the arginine requirements for adenovirus biosynthesis. Arch. ges. Virusforsch.20, 20–28 (1967).Google Scholar
  9. 9.
    Cohen, S. S., Hoffner, N., Jansen, M., Moore, M., Raina, A.: Polyamines, RNA synthesis and streptomycin lethality in a relaxed mutant ofEscherichia coli strain 15TAU. Proc. nat. Acad. Sci. U.S.A.57, 721–728 (1967).Google Scholar
  10. 10.
    Courtney, R. J., McCombs, R. M., Benyesh-Melnick, M.: Antigens specified by herpesviruses. I. Effect of arginine deprivation on antigen syntheses. Virology40, 379–386 (1970).Google Scholar
  11. 11.
    Courtney, R. J., McCombs, R. M., Benyesh-Melnick, M.: Antigens specified by herpesviruses. II. Effect of arginine deprivation on the synthesis of cytoplasmic and nuclear proteins. Virology43, 456–365 (1971).Google Scholar
  12. 12.
    Eagle, H.: Propagation in a fluid medium of a human epidermoid carcinoma, strain K.B. Proc. Soc. exp. Biol. (N.Y.)89, 362–364 (1955).Google Scholar
  13. 13.
    Eagle, H.: Amino acid metabolism in mammalian cell cultures. Science130, 432 to 437 (1959).Google Scholar
  14. 14.
    Everitt, E., Sundquist, B., Phillipson, L.: Mechanism of the arginine requirement for adenovirus synthesis. 1. Synthesis of structural proteins. J. Virol.8, 742 to 753 (1971).Google Scholar
  15. 15.
    Fox, C. F., Weiss, S. B.: Enzymatic synthesis of ribonucleic acid. II. Prospects of the deoxyribonucleic acid primed reaction withMicrococcus lysodeikticus ribonucleic acid polymerase. J. biol. Chem.239, 175–185 (1965).Google Scholar
  16. 16.
    Goldblum, N., David, Z., Becker, Y.: Effect of withdrawal of arginine and other amino acids on the synthesis of tumour and viral antigens of SV40. J. gen. Virol.3, 143–146 (1968).Google Scholar
  17. 17.
    Gonczol, E., Jeney, E., Vaczi, L.: Replication of herpes simplex virus in arginine-free media. II. DNA synthesis in infected and non-infected human embryonic fibroblast and HeLa tissue culture cells. Acta Microbiol. Acad. Sci. Hung.14, 39–43 (1967).Google Scholar
  18. 18.
    Goodheart, C. R., Filbert, J. E., McAllister, R. M.: Human cytomegalovirus. Effects of 5-fluoro-deoxyuridine on viral synthesis and cytopathology. Virology21, 530–532 (1963).Google Scholar
  19. 19.
    Goodheart, C. R., Faross, J. B.: Human cytomegalovirus. Assay by counting infected cells. Virology19, 532–535 (1963).Google Scholar
  20. 20.
    Goodheart, C. R., McAllister, R. M., Filbert, J. E.: Human cytomegalovirus DNA synthesis and migration in infected cells studied autoradiographically. Virology23, 603–608 (1964).Google Scholar
  21. 21.
    Hayashi, K., Russel, W. C.: A study of the development of adenovirus antigens by immunofluorescent technique. Virology24, 470–480 (1968).Google Scholar
  22. 22.
    Hayflick, L.: Tissue cultures and mycoplasma. Tex. Rep. Biol. Med.23, 285–303 (1965).Google Scholar
  23. 23.
    Hayflick, L., Moorhead, P. S.: The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961).Google Scholar
  24. 24.
    Holterman, O. A.: Amino acid requirement for the propagation of vaccinia virus in Earle's L cells. J. gen. Virol.3, 9–18 (1969).Google Scholar
  25. 25.
    Inglis, V. B.: Requirement of arginine for the replication of herpes virus. J. gen. Virol.3, 9–17 (1968).Google Scholar
  26. 26.
    Jeney, E., Gonczol, E., Vaczi, L.: Replication of herpes simplex virus in arginine free media: I. Effect of arginine deficiency in different tissue culture cells. Acta Microbiol. Acad. Sci. Hung.3, 718–729 (1967).Google Scholar
  27. 27.
    Krakow, J. S.: Ribonucleic acid polymerase ofAzotobacter vinelandii. III. Effect of polyamines. Biochim. biophys. Acta42, 566–571 (1963).Google Scholar
  28. 28.
    McAllister, R. M., Filbert, J. E., Goodheart, C. R.: Human cytomegalovirus. Studies on the mechanism of viral cytopathology and inclusion body formation. Proc. Soc. exp. Biol. (N.Y.)124, 932–937 (1967).Google Scholar
  29. 29.
    McAllister, R. M., Straw, R. M., Filbert, J. E., Goodheart, C. R.: Human cytomegalovirus. Cytochemical observation of intracellular lesion development correlated with viral synthesis and release. Virology19, 521–531 (1963).Google Scholar
  30. 30.
    McLlvaine, T. C.: A buffer solution for colorimetric comparison. J. biol. Chem.49, 183–186 (1921).Google Scholar
  31. 31.
    Minamishima, Y. C., Benyesh-Melnick, M.: Arginine-dependent events in cyto-megalovirus infection. Bact. Proc. p. 170 (1967).Google Scholar
  32. 32.
    Morris, D. R., Pardee, A. B.: Multiple pathways of putrescine biosynthesis inEscherichia coli. J. biol. Chem.241, 3129–3135 (1966).Google Scholar
  33. 33.
    Obert, G.: M. D. Thesis, University of Strasbourg, France, 1970.Google Scholar
  34. 34.
    Rapp, F., Rasmussen, E., Benyesh-Melnick, M.: Immunofluorescent focus technique in studying the replication of CMV. J. Immunol.91, 709–719 (1963).Google Scholar
  35. 35.
    Roizman, B., Roane, P. R.: Cellular compartmentalisation of herpes virus antigens during viral replication. J. Virol.1, 181–192 (1967).Google Scholar
  36. 36.
    Rouse, H. C., Bonifas, V. H., Schlesinger, R. W.: Dependence of adenovirus replication on arginine and inhibition of plaque formation by pleuropneumonia-like organisims. Virology20, 357–365 (1964).Google Scholar
  37. 37.
    Rouse, H. C., Schlesinger, R. W.: Arginine-dependent steps in adenovirus replication. Bact. Proc., p. 127 (1966).Google Scholar
  38. 38.
    Rouse, H. C., Schlesinger, R. W.: An arginine-dependent step in the maturation of type 2 adenovirus. Virology33, 513–522 (1967).Google Scholar
  39. 39.
    Russel, W. C., Becker, Y.: A maturation factor for adenovirus. Virology35, 18–27 (1968).Google Scholar
  40. 40.
    Singer, S. H., Fitzgerald, E. A., Barile, M. F., Kirschstein, R. L.: Effect of mycoplasmas on vaccinia virus growth: Requirements for arginine. Proc. Soc. exp. Biol. (N.Y.)133, 1439–1442 (1970).Google Scholar
  41. 41.
    Spring, S., Roizman, B., Spear, P.: Selective failure of protein synthesis in herpes virus infected cells deprived of arginine. Virology38, 710–712 (1969).Google Scholar
  42. 42.
    Tankersley, R. W.: Amino acid requirements of herpes simplex virus in human cells. J. Bact.87, 609–613 (1964).Google Scholar
  43. 43.
    Williamson, J. D., Cox, P.: Use of a new buffer in the culture of animal cells. J. gen. Virol.2, 309–312 (1968).Google Scholar
  44. 44.
    Winters, A. L., Consigli, R. A.: Arginine requirementsof polyoma virus replicating in primary mouse embryo cells. Bact. Proc. p. 182 (1969).Google Scholar
  45. 45.
    Winters, A. L., Consigli, R. A.: Effect of arginine deprivation on polyoma virus infection of mouse embryo cultures. J. gen. Virol.10, 53–63 (1971).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Helen M. Garnett
    • 1
    • 2
  1. 1.Poliomyelitis Research FoundationJohannesburgSouth Africa
  2. 2.Department of Botany and MicrobiologyUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations