Skip to main content
Log in

On the metric theory of the nearest integer continued fraction expansion

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Supposek n denotes either ϕ(n) or ϕ(p n) (n=1,2,...) where the polynomial ϕ maps the natural numbers to themselves andp k denotes thek th rationals prime. Also let\(\left( {\frac{{r_n }}{{q_n }}} \right)_{n = 1}^\infty \) denote the sequence of convergents to a real numberx and letc n(x)) n=1 be the corresponding sequence of partial quotients for the nearest integer continued fraction expansion. Define the sequence of approximation constantsθ n(x)) n=1 by

$$\theta _n (x) = q_n^2 \left| {x - \frac{{r_n }}{{q_n }}} \right|. (n = 1,2,...)$$

In this paper we study the behaviour of the sequences\((\theta _{k_n } (x))_{n = 1}^\infty \) and\((c_{k_n } (x))_{n = 1}^\infty \) for almost allx with respect to the Lebesgue measure. In the special case wherek n=n (n=1,2,...) these results are known and due to H. Jager, G. J. Rieger and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J (1989) Pointwise ergodic theorems for arithmetic sets. Publ. I. H. E. S.69: 5–45

    Google Scholar 

  2. Cornfeld IP, Formin SV, Sinai YG (1982) Ergodic Theory. Berlin Heidelberg New York: Springer

    Google Scholar 

  3. Hardy, GH, Wright E (1979) An Introduction to Number Theory. Oxford: Univ Press

    Google Scholar 

  4. Ito, S, Nakada H, Tanaka S (1981) On the invariant measure for the transformation associated with some real continued fractions. Keio Engineering Reports30: 61–69

    Google Scholar 

  5. Jager H (1986) The distribution of certain sequences connected with the continued fraction. Indag Math48: 61–69

    Google Scholar 

  6. Kraaikamp C (1987) The distribution of some sequences connected with the nearest integer continued fraction expansion. Indag Math49: 177–191

    Google Scholar 

  7. Kraaikamp C (1993) Maximal S-expansions are Bernoulli shifts. Bull Soc Math France121: 117–131

    Google Scholar 

  8. Nair R (1993) On Polynomials in primes and J. Bourgains's circle method approach to ergodic theorems II. Studia Math105: 207–233

    Google Scholar 

  9. Nair R (1994) On the metrical theory of continued fractions. Proc. Amer Math Soc120: 1041–1046

    Google Scholar 

  10. Perron O (1935) Die Lehre von den Kettenbrüchen, Band 1, 3. Aufl. Stuttgart: Teubner

    Google Scholar 

  11. Rieger GJ (1979) Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen. J reine angew Math310: 171–181

    Google Scholar 

  12. Rhin G (1975) Repartition modulo 1 def(p n) quandf est une series entire. Lect Notes Math475 176–244

    Google Scholar 

  13. Walters P (1982) An Introduction to Ergodic Theory, pp 313–361

  14. Weyl H (1976) Über die Gleichverteilung von Zahlen mod. Eins Math Ann77: 313–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, R. On the metric theory of the nearest integer continued fraction expansion. Monatshefte für Mathematik 125, 241–253 (1998). https://doi.org/10.1007/BF01317317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01317317

1991 Mathematics Subject Classification

Key words

Navigation