Skip to main content
Log in

Schwinger-boson mean-field theory of spin-1/2 2D antiferromagnet

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A consistent Schwinger-boson mean field theory is developed for a spin-1/2 2D antiferromagnet. It predicts that there are two branches of the Schwinger-boson excitation spectrum: an acoustic branch, essentially the same as that predicted by Arovas and Auerbach theory, and a new optical branch. The present theory provides a natural explanation of the mystery of the Raman “two magon” scattering from La2CuO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedell, K.S., Coffey, P., Meltzer, D.E., Pines, D., Schrieffer, J.R. (eds.): High Temperature Superconductivity. Proceedings of the Los Alamos Symposium. New York: Addison-Wesley 1990

    Google Scholar 

  2. Ginsberg, D.M. (ed.): Physical properties of high temperature superconductors. Vol. 1. Singapore: World Scientific 1989

    Google Scholar 

  3. Birgeneau, R.J., Shirane, G.: In: [2]ibid, p. 151

    Google Scholar 

  4. Keffer, F.: Spin wave. In: Handbuch der Physik. Flügge, S. (ed.), Vol. 18, Teil 2. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  5. Lyons, K.B., FLeury, P.A., Remeika, J.P., Cooper, A.S., Negran, T.J.: Phys. Rev. B37, 2353 (1988)

    Google Scholar 

  6. Lyons, K.B., Sulewski, P.E., Fleury, P.A., Carter, H.L., Cooper, A.S., Espinosa, G.P., Fisk, Z., Cheong, S-W.: Phys. Rev. B39, 9693 (1989)

    Google Scholar 

  7. Marville, L.: Ph.D. thesis, Masschusetts Institute of Technology 1992

  8. Parkinson, J.B.: J. Phys. C2, 2012 (1969)

    Google Scholar 

  9. Elliott, R.J., Thorpe, M.F.: J. Phys. C2, 1630 (1969)

    Google Scholar 

  10. Arovas, D.P., Auerbach, A.: Phys. Rev. B38, 316 (1988)

    Google Scholar 

  11. Sarker, S., Jayaprakash, C., Krishnamurthy, H.R., Ma, M.: Phys. Rev. B40, 5028 (1989)

    Google Scholar 

  12. Yoshioka, D.: J. Phys. Soc. Jpn.58, 32 (1989)

    Google Scholar 

  13. In the mean field Hamiltonian (2), there are two other terms:\(--J\chi \sum\limits_{k\sigma } ' \gamma _k (b_{k\sigma }^{A\dag } b_{k\sigma }^{B\dag } + b_{k\sigma }^{B\dag } b_{k\sigma }^A ) and --iJ\tilde \chi \sum\limits_{k\sigma } ' \tilde \gamma _k \sigma (b_{k\sigma }^{A\dag } b_{k--\sigma }^B + b_{k--\sigma }^{B\dag } b_{k\sigma }^A )\) in which\(\chi = \sum\limits_\sigma {\left\langle {b_{i\sigma }^\dag b_{i + \hat \eta \sigma } } \right\rangle } , \tilde \chi = \sum\limits_\sigma {\sigma \left\langle {b_{i\sigma }^\dag b_{i + \hat \eta --\sigma } } \right\rangle } \) and\(\tilde \gamma _k = \frac{1}{2}\) (sink x a + sink y a). Our numerical computation shows that\(\tilde \chi \) is always zero, and χ can be either zero or nonzero. However, it is only when χ=0 that there are two pointsk=0 and π at which the bose condensation occurs. So for the theory of antiferromagnet, we choose the solution χ=0

  14. Kane, C.L., Lee, P.A., Ng, T.K., Chakraborty, B., Read, N.: Phys. Rev. B41, 2653 (1990)

    Google Scholar 

  15. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of quantum field theory in statistical physics. Englewood Clint, N.J.: Prentice-Hall

  16. Thomas, G.A., Rapkine, D.H., Cooper, S.L., Cheong, S-W., Cooper, A.S., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. B45, 2474 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Hs., Wu, Mw. Schwinger-boson mean-field theory of spin-1/2 2D antiferromagnet. Z. Physik B - Condensed Matter 93, 151–154 (1994). https://doi.org/10.1007/BF01316956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01316956

PACS

Navigation