Skip to main content
Log in

On the electrical conductivity of intermediate valence compounds

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The electrical resistivity of the hybridized 4f-(5d/6s) system interacting with LA phonons is calculated by applying the memory function method to the periodic Anderson model in Hartree-Fock approximation. We propose a new mechanism to explain in part the anomalous resistivity of mixed valence compounds such as CePd3. For finite hybridizationV a finite fraction of 4f electrons participates in electrical conduction leading to an essential change of the normald band current. Resistivity and the fraction of 4f electrons increase with increasing value of [V/(E−μ)]2 where (E−μ) is the distance between the effective positionE of the 4f level and the chemical potential. In typical mixed valence systems [V/(E−μ)]2 is strongly temperature dependent and decreases with increasing temperature. This explains the high temperature resistivity behaviour of CePd3. For (E−μ) being small compared to the Debye-temperature the resistivity is enhanced and becomes extremely sensitive to small changes of (E−μ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader, S.D., Phillips, N.E., McWhan, D.B.: Phys. Rev. B7, 4686 (1973)

    Google Scholar 

  2. Penney, T., Holtzberg, F.: Phys. Rev. Lett.34, 322 (1975)

    Google Scholar 

  3. Scoboria, P., Crow, J.E., Mihalisin, T.: J. Appl. Phys.50, 1895 (1979)

    Google Scholar 

  4. Schneider, H.: Diplomarbeit, Köln (1980)

  5. Ghatak, S.K., Avignon, M., Bennemann, K.H.: J. Phys. F6, 1441 (1976)

    Google Scholar 

  6. Leder, H.J., Czycholl, G.: Verhandl. DPG (VI) 15, 261 (1980), and to be published

  7. Ono, Y., Mishra, S.G.: Solid State Commun.33, 1177 (1980)

    Google Scholar 

  8. Atoyan, A.M., Barabanov, A.F., Maksimov, L.A.: Sov. Phys. JETP47, 1155 (1979)

    Google Scholar 

  9. Entel, P., Leder, H.J., Grewe, N.: Z. Physik B30, 277 (1978)

    Google Scholar 

  10. Mori, H.: Progr. Theor. Phys.33, 423 (1965);34, 399 (1965)

    Google Scholar 

  11. Götze, W., Wölfle, P.: Phys. Rev. B6, 1226 (1972)

    Google Scholar 

  12. Grewe, N., Entel, P.: Z. Physik B33, 331 (1979)

    Google Scholar 

  13. Entel, P., Grewe, N.: Z. Physik B34, 229 (1979)

    Google Scholar 

  14. Hirst, L.L.: Phys. kondens. Materie11, 255 (1970)

    Google Scholar 

  15. Chakraborty, B., Allen, P.B.: Phys. Rev. Lett.42, 736 (1979)

    Google Scholar 

  16. Jayaraman, A.: Phys. Rev.137A, 179 (1965)

    Google Scholar 

  17. Plümacher, D.: Staatsexamensarbeit, Köln (1977), and: Arbeits-und Ergebnisbericht 1977–1979 des Sonderforschungsbereiches 125, Aachen-Jülich-Köln

  18. Ziman, J.M.: Electrons and Phonons. Oxford: At the Clarendon Press 1963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed within the research program of the Sonderforschungsbereich 125, Aachen-Jülich-Köln

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entel, P., Mühlschlegel, B. & Ono, Y. On the electrical conductivity of intermediate valence compounds. Z. Physik B - Condensed Matter 38, 227–234 (1980). https://doi.org/10.1007/BF01315661

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01315661

Keywords

Navigation