Zeitschrift für Physik B Condensed Matter

, Volume 38, Issue 4, pp 303–311 | Cite as

Dynamic concepts in neutron polarization

  • G. Badurek
  • H. Rauch
  • A. Zeilinger


A new method of polarizing a neutron beam is proposed, which in contrast to conventional polarizers allows to make use of 100% of the incident intensity. It exploits the fact, that neutrons of different spin states differ in velocity after they have passed through an arrangement of crossed static and time-dependent magnetic fields. Provided the neutrons initially being sufficiently monochromatic, the two spin states can be separated in momentum space and be forced to point into the same spatial direction by means of a momentum-dependent spin rotation procedure. With presently available magnetic field technology (or nuclear pseudomagnetism) this “dynamic” method is applicable at continuous sources to polarize highly monochromatic thermal neutrons as those obtained by perfect crystal diffraction. The method seems to be particularly powerful, however, in the production of polarized cold and ultra-cold neutrons, where energy spreads of 1% and more are admissible. It is shown that at pulsed sources even polychromatic neutrons can be polarized with this technique.


Magnetic Field Spin State Thermal Neutron Momentum Space Field Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badurek, G., Rauch, H., Zeilinger, A.: Proc. Int. Workshop on Neutron Spin Echo, Grenoble, October 1979. Lecture Notes in Physics, Berlin, Heidelberg, New York: Springer (in print)Google Scholar
  2. 2.
    Marshall, W., Lovesey, S.W.: Theory of thermal neutron scattering. Oxford: Clarendon Press 1971Google Scholar
  3. 3.
    Sherwood, A.E., Stephenson, T.E., Bernstein, S.: Phys. Rev.96, 1546 (1954)Google Scholar
  4. 4.
    Funahashi, S.: Nucl. Instrum. Methods137, 99 (1976)Google Scholar
  5. 5.
    Zeilinger, A., Shull, C.G.: Phys. Rev. B19, 3957 (1979)Google Scholar
  6. 6.
    Abragam, A.: The principles of nuclear magnetism, Oxford: Clarendon Press 1961Google Scholar
  7. 7.
    Kendrick, H., King, J.S., Werner, S.A., Arrot, A.: Nucl. Instrum. Methods79, 82 (1970)Google Scholar
  8. 8.
    Drabkin, G.M., Zhitnikov, R.A.: Sov. Phys. JETP11, 729 (1960)Google Scholar
  9. 9.
    Krüger, E.: Proc. Int. Conf. Poalrized Neutrons in Cond. Matter Research, Zaborów Poland, September 1979, in Print at NukleonikaGoogle Scholar
  10. 10.
    Birr, M., Heidemann, A., Alefeld, B.: Nucl. Instrum. Methods95, 435 (1971)Google Scholar
  11. 11.
    Gähler, A., Kalus, J., Mampe, W.: Submitted to J. Phys. E.Google Scholar
  12. 12.
    Jones, T.J.L., Williams, W.G.: Rurtherford Lab. Report RL-77-079/A, Chilton Didcot UK (1977)Google Scholar
  13. 13.
    Badurek, G., Westphal, G.P., Ziegler, P.: Nucl. Instrum. Methods120, 351 (1973)Google Scholar
  14. 14.
    Rauch, H., Petrascheck, D. in: Neutron diffraction. Dachs, H. (ed.). Top. Current Physics6, 303 (1978)Google Scholar
  15. 15.
    Drabkin, G.M., Trunov, V.A., Runov, V.V.: Sov. Phys. JETP27, 194 (1968)Google Scholar
  16. 16.
    Mezei, F.: Z. Physik255, 146 (1972)Google Scholar
  17. 17.
    Hayter, J.B.: Z. Physik B31, 117 (1978)Google Scholar
  18. 18.
    Abragam, A. in: Trends in physics (European Physical Society, Geneva, Switzerland, 1973) p. 177Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. Badurek
    • 1
  • H. Rauch
    • 2
  • A. Zeilinger
    • 3
  1. 1.Institut für Experimentelle KernphysikTechnische Universität WienWienAustria
  2. 2.Institut für Festkörperforschung der Kernforschungsanlage JülichJülich 1Federal Republic of Germany
  3. 3.Atominstitut der Österreichischen UniversitätenWienAustria

Personalised recommendations