Skip to main content
Log in

Mean relaxation time approximation for dynamical correlation functions in stochastic systems near instabilities

II. The single mode laser

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Correlation functions for the stochastic description of the single mode laser are investigated using the simple approximation method presented in part I[1]. The application of the mean relaxation time approximation to stochastic systems with state spaces of dimensiond>1 is thereby demonstrated. Our approach yields results which are indistinguishable from the actual lineshape. Hence, they constitute a slight improvement over the results of Risken and co-workers, where these results are based on an analysis of the lowest eigenvalue of the stochastic operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nadler, W., Schulten, K.: Z. Phys. B-Condensed Matter59, 53 (1985); part I of the present series

    Google Scholar 

  2. Schulten, K., Brünger, A., Nadler, W., Schulten, Z.: In: Synergetics-from microscopic to macroscopic order. Frehland, E. (ed.), p. 80. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  3. Brünger, A., Peters, R., Schulten, K.: J. Chem. Phys.82, 2147 (1985)

    Google Scholar 

  4. Nadler, W., Marcus, R.A.: J. Chem. Phys.86, 3906 (1987)

    Google Scholar 

  5. Nadler, W., Schulten, K.: Phys. Rev. Lett.51, 1712 (1983)

    Google Scholar 

  6. Nadler, W., Schulten, K.: Proc. Natl. Acad. Sci. USA81, 5719 (1984)

    Google Scholar 

  7. Nadler, W., Schulten, K.: J. Chem. Phys.84, 4015 (1986)

    Google Scholar 

  8. Zwanzig, R.: In: Lectures in theoretical physics, Vol. 3. Brittin, W., Dunham, L. (eds.), p. 135 New York: Wiley 1961

    Google Scholar 

  9. Mori, H.: Prog. Phys.34, 399 (1965)

    Google Scholar 

  10. Grossmann, S.: Phys. Rev. A17, 1123 (1978)

    Google Scholar 

  11. Risken, H.: Z. Phys.191, 302 (1966)

    Google Scholar 

  12. Risken, H., Vollmer, H.D.: Z. Phys.201, 323 (1967)

    Google Scholar 

  13. Seybold, K., Risken, H.: Z. Phys.267, 323 (1974)

    Google Scholar 

  14. Risken, H.: The Fokker-Planck Equation. Berlin, Heidelberg: Springer 1984

    Google Scholar 

  15. An appealing intuitive picture of this process is given in: Mooradian, A.: Phys. Today38(5), 43 (May 1985)

    Google Scholar 

  16. Arecchi, F.T., Giglio, M., Sona, A.: Phys. Lett.25A, 341 (1967)

    Google Scholar 

  17. Gerhardt, H., Welling, H., Güttner, A.: Z. Phys.253, 113 (1972)

    Google Scholar 

  18. Nadler, W., Schulten, K.: J. Chem. Phys.82, 151 (1985)

    Google Scholar 

  19. Press, W.H., Flannery, B.P., Teukolsky S.A., Vetterling, W.T.: Numerical recipes. Cambridge: Cambridge University Press 1986

    Google Scholar 

  20. Schenzle, A., Brand, H.: Phys. Rev. A20, 1628 (1979)

    Google Scholar 

  21. Fujisaka, H., Grossmann, S.: Z. Phys. B-Condensed Matter43, 69 (1981)

    Google Scholar 

  22. Jung, P., Risken, H.: Z. Phys. B-Condensed Matter59, 469 (1985)

    Google Scholar 

  23. Jung, P., Leiber, Th., Risken, H.: Z. Phys. B-Condensed Matter66, 397 (1987)

    Google Scholar 

  24. Ziegler, K., Horner, H.: Z. Phys. B-Condensed Matter37, 339 (1980); we note that this paper also discusses the problems arising from an inappropriate renormalization of the perturbation expansion

    Google Scholar 

  25. For a somewhat different approach see Richter P.H., Grossmann, S.: Z. Phys248, 244 (1971); one result of this work is corrected in: ibid.255, 59 (1972)

    Google Scholar 

  26. Although the drift forces in (3.1) cannot be derived anymore from the potential that governs the stationary distribution, detailed balance still holds for this model. see [13]

  27. We note that, since the correlation functionECE(t) is real, its generalized moments (2.11) are also real, although the operator (3.2) has complex eigenvalues. Therefore, the MRTA has a solely relaxational behavior

  28. That the calculation of generalized moments in manifestly higher-dimensional systems is numerically feasible was demonstrated in [7] using sparse matrix techniques. Limitations arise only through the size of the actually available computer memory, which is steadily increasing in recent years

  29. Shenoy, S.R., Agarwal, G.S.: Phys. Rev. A29, 1315 (1984)

    Google Scholar 

  30. Wang, X.W., Lin, D.L., Hioe, F.T.: Phys. Rev. A34, 1251 (1986)

    Google Scholar 

  31. Lett, P.: Phys. Rev. A34, 2044 (1986)

    Google Scholar 

  32. Grossmann, S., Krauth, W.: Phys. Rev. A35, 2523 (1987)

    Google Scholar 

  33. Krauth, W., Grossmann, S.: Phys. Rev. A35, 4192 (1987)

    Google Scholar 

  34. Dixit, S.N., Sahni, P.S.: Phys. Rev. Lett.50, 1273 (1983)

    Google Scholar 

  35. Leiber, Th., Jung, P., Risken, H.: Z. Phys. B-Condensed Matter68, 123 (1987)

    Google Scholar 

  36. Leiber, Th., Marchesoni, F., Risken, H.: Phys. Rev. Lett.59, 1381 (1987)

    Google Scholar 

  37. Doering, C.R., Hagan, P.S., Levermore, C.D.: Phys. Rev. Lett.59, 2129 (1987)

    Google Scholar 

  38. Jung, P., Hänggi, P.: Phys. Rev. Lett.61, 11 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, W., Schulten, K. Mean relaxation time approximation for dynamical correlation functions in stochastic systems near instabilities. Z. Physik B - Condensed Matter 72, 535–543 (1988). https://doi.org/10.1007/BF01314535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314535

Keywords

Navigation