Skip to main content
Log in

Correlations between frequency of infra-red active vibrational modes and copper-oxygen distance in copper oxides. Application to superconductors

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu−O distance.v max increases at an impressive rate of ∼20 cm−1 per 0.01 Å when the Cu−O distance becomes less than 1.97 Å, which is the Cu2+−O2− distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a “titration” procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7−d structure such as LaCaBaCu3O7−d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu−O distance is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For some recent reviews see Ferraro, J.R., Maroni, V.A.: Preprint. Appl. Spectrosc. (submitted for publication), Thomsen, C., Cardona, M.: In: Physical properties of high-temperature superconductors. Ginsberg, D.M. (ed.), p. 409. Singapore: World Scientific 1989

    Google Scholar 

  2. Timusk, T., Reedyk, M., Hughes, R., Bonn, D.A., Garrett, J.D., Greedan, J.E., Stager, C.V., Tanner, D.B., Feng, G.Å., Herr, S.L., Kamaras, K., Thomas, G.A., Cooper, S.L., Orenstein, J., Schneemeyer, L.F., Mills, A.J.: Physica C162–164, 841 (1989)

    Google Scholar 

  3. See for example the articles in the Series: Vibrational spectra and structure. Durig, J.R. (ed.) Amsterdam: Elsevier as well as articles in Spectrochim. Acta, A35 (1979)

  4. For a recent discussion on the vibrational spectra of layered materials see Nakashima, S., Hangyo, M., Mitsuishi, A.: In: Vibrational spectra and structure. Durig, J.R. (ed.), Vol. 14, p. 305. Amsterdam: Elsevier 1981

    Google Scholar 

  5. Kress, W., Schroder, U., Prade, J., Kulkarni, A.D., De Wette, F.W.: Phys. Rev. B38, 2906 (1988)

    Google Scholar 

  6. Echegut, P., Gervais, F., Dembinsky, K., Gervais, M., Odier, P.: Solid State Commun.69, 359 (1989)

    Google Scholar 

  7. Crawford, M.K., Burns, G., Holtzberg, F.: Solid State Commun.70, 557 (1989)

    Google Scholar 

  8. Bazhenov, A.V., Timofeev, V.B.: Physica C162–164, 1247 (1989)

    Google Scholar 

  9. Feile, R.: Physica C159, 1 (1989)

    Google Scholar 

  10. Bates, F.E.: Phys. Rev. B39, 322 (1989)

    Google Scholar 

  11. Bates, F.E., Eldridge, J.E.: Solid State Commun.72, 187 (1989)

    Google Scholar 

  12. Bauer, M., Ferreira, I.B., Genzel, L., Cardona, M., Morugaraj, P., Maier, J.: Solid State Commun.72, 551 (1989)

    Google Scholar 

  13. Sreedhar, K., Ganguly, P.: Phys. Rev. B41, 371 (1990)

    Google Scholar 

  14. Shannon, R.D.: Acta Crystallogr. A32, 751 (1976)

    Google Scholar 

  15. Kemmler-Sachs, S., Ehmann, A.: J. Solid State Chem.44, 366 (1988)

    Google Scholar 

  16. Ganguly, P., Vasanthacharaya, N.Y.: J. Solid State Chem.61, 164 (1984)

    Google Scholar 

  17. This aspect was first mentioned in the context of the superconductors by Stavola, M., Cava, R.J., Rietman, E.A.: Phys. Rev. Lett.58, 1571 (1989)

    Google Scholar 

  18. Thomas, G.A., Orenstein, J., Rapkine, D.H., Capizzi, M., Mills, A.J., Bhatt, R.N., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. Lett.61, 1313 (1988)

    Google Scholar 

  19. Collins, R.T., Schlesinger, Z., Holtzberg, F., Chaudhari, P., Feild, C.: Phys. Rev. B39, 6571 (1989)

    Google Scholar 

  20. Manthiram, A., Lee, S.J., Goodenough, J.B.: J. Solid State Chem.73, 278 (1988)

    Google Scholar 

  21. De Leeuw, D.M., Mutsaers, C.A.H.A., Hal, H.A.M. van, Verweij, H., Carim, A.H., Smoorenburg, H.C.A.: Physica C156, 126 (1988)

    Google Scholar 

  22. Nguyen, N., Er-Rakho, L., Michel, C., Choisnet, J., Raveau, B.: Mater. Res. Bull.15, 891 (1980)

    Google Scholar 

  23. Torrance, J.B., Tokura, Y., Nazzal, A., Parkin, S.S.: Phys. Rev. Lett.60, 542 (1988)

    Google Scholar 

  24. Leeuw, D.M. de: J. Less Common Metals,150, 95 (1989)

    Google Scholar 

  25. Steeman, R.A., Leeuw, D.M. de, Geelep, G.P.J., Frikkee, E.: Report ECN-89-124 (1989)

  26. For a recent review dealing with this aspect see Freidel, J.: J. Phys. Condens. Matter1, 7757 (1989)

    Google Scholar 

  27. See the review by Micnas, R., Ranninger, J., Robaskiewicz, S.: Rev. Mod. Phys. , (1990)

  28. Muller-Buschbaum, H.: Angew. Chem. Int. Ed. Engl.16, 674 (1977)

    Google Scholar 

  29. Raveau, B.: In: Advances in solid state chemistry. Rå, C.N.R. (ed.). New Delhi: Indian National Science Academy 1986

    Google Scholar 

  30. For an excellent review on the structural aspects see Yvon, K., Francois, M.: Z. Phys. B — Condensed Matter76, 413 (1989)

    Google Scholar 

  31. Siegrist, T., Zahurak, S.M., Murphy, D.W., Roth, R.S.: Nature334, 231 (1988)

    Google Scholar 

  32. Weller, M.T., Lines, D.R.: J. Solid State Chem.82, 21 (1989)

    Google Scholar 

  33. Keyes, R.W.: J. Appl. Phys.33, 3371 (1962)

    Google Scholar 

  34. Martin, R.M.: Phys. Rev. B1, 4005 (1970)

    Google Scholar 

  35. Bazhenov, A.V., Fursova, T.N., Timofeev, V.B., Cooper, A.S., Remeika, J.P., Fisk, Z.: Phys. Rev. B40, 4413 (1989)

    Google Scholar 

  36. Brown, I.D.: Chem. Soc. Rev.7, 359 (1978)

    Google Scholar 

  37. Singh, K.K., Ganguly, P., Goodenough, J.B.: J. Solid State Chem.52, 254 (1984)

    Google Scholar 

  38. Ganguly, P., Rao, C.N.R.: J. Solid State Chem.53, 193 (1984)

    Google Scholar 

  39. Ganguly, P.: Advances in solid state chemistry. Rao, C.N.R. (ed.), p. 135. New Delhi: Indian National Science Academy 1986

    Google Scholar 

  40. Ganguly, P.: (to be published)

  41. McCarron, E.M., Crawford, M.K., Parise, J.B.: J. Solid State Chem.78, 192 (1989)

    Google Scholar 

  42. Vega, A.J., Crawford, M.K., McCarron, E.M., Farneth, W.E.: Physica C162–164, 165 (1989)

    Google Scholar 

  43. Infante, C., El Mously, M.K., Dayal, R., Hussain, M., Siddiqui, S.A., Ganguly, P.: Physica C (accepted for publication)

  44. Bishop, A.R., Martin, R.L., Muller, K.A., Tesanovic, Z.: Z. Phys. B — Condensed Matter76, 17 (1989)

    Google Scholar 

  45. We adopt the same nomenclature for the various ions as that conventionally adopted for YBa2Cu3O7−d [30]. The existence of chains in LaCaBaCu3O7−d is not clear but there are certainly likely to be axial Cu1−O linkages as well as in the Cu1(O4, O5) planes

  46. Ganguly, P., Sreedhar, K.: In: Progress in high-temperature superconductivity. Rao, C.N.R. (ed.), Vol. 7, p. 134. Singapore: World Scientific 1988

    Google Scholar 

  47. Ganguly, P., Mohan Ram, R.A., Sreedhar, K., Rå, C.N.R.: Solid State Commun.62, 807 (1987)

    Google Scholar 

  48. Triscone, J.-M., Fischer, O., Brunner, O., Antognazza, L.L., Kent, A.D.: Phys. Rev. Lett.64, 804 (1990)

    Google Scholar 

  49. Anderson, P.W.: Phys. Lett.34, 953 (1975)

    Google Scholar 

  50. Chakraverty, B.K., Sienko, M.J., Bonnerot, J.: Phys. Rev. B17, 3781 (1978)

    Google Scholar 

  51. Chakraverty, B.K.: J. Phys. (Paris) Lett.40, L-99 (1979)

    Google Scholar 

  52. Alexandrov, A.A.: Phys. Rev. B38, 925 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, P., Infante, C., Siddiqi, S.A. et al. Correlations between frequency of infra-red active vibrational modes and copper-oxygen distance in copper oxides. Application to superconductors. Z. Physik B - Condensed Matter 83, 23–30 (1991). https://doi.org/10.1007/BF01314393

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314393

Keywords

Navigation