Skip to main content
Log in

Influence of anoxia on adaptation of euryhaline polychaetes to hyposmotic conditions

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The metabolic reactions ofArenicola marina andNereis diversicolor (both euryoxic and euryhaline polychaetes from the intertidal) to hyposmotic shock under anaerobic conditions were investigated in 1987–1988 using specimens from the East Frisian Wadden Sea. Although reductions in salinity were within the limits of tolerance under normoxic conditions, during anoxia they resulted in increased stress and a significant reduction in survival time. Both species were unable to sufficiently intensify anaerobic energy production to match the increased requirement for energy during adaptation to hyposmotic conditions. Moreover, as an adaptation to anoxic conditions, worms reduced their metabolic activity after the first 6 h. Thus, specimens remained more swollen than at the same reduction in salinity under normoxic conditions. InA. marina only the extracellular volume was reduced all be it to a limited extent.N. diversicolor probably reacted in the same or similar way. In both species, cells remained swollen. The concentrations of cellular free amino acids were not reduced; that means the main mechanism of cellular volume regulation was not activated under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Amende, L. M., Pierce, S. K. (1980). Free amino acid mediated volume regulation of isolatedNoetia ponderosa red cells: control by Ca2+ and ATP. J. comp. Physiol. (Sect. B) 138: 291–298

    Google Scholar 

  • Bergmeyer, H. U. (ed.) (1984). Methods of enzymatic analysis. Vol. VI. Metabolites 1, 3rd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Bergmeyer, H. U. (ed.) (1985). Methods of enzymatic analysis. Vol. VII. Metabolites 2, 3rd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Boyden, C. R. (1972). The behaviour, survival and respiration of the cocklesCerastoderma edule andC. glaucum in air. J. mar. biol. Ass. U.K. 43: 697–712

    Google Scholar 

  • Costa, C. J., Pierce, S. K. (1983). Volume regulation in the red coelomocytes ofGlycera dibranchiata: an interaction of amino acid and K+ effluxes. J. comp. Physiol. (Sect. B) 151: 133–144

    Google Scholar 

  • Dörjes, J., Michaelis, H., Rhode, B. (1986). Long-term studies of macrozoobenthos in intertidal and shallow subtidal habitats near the island of Norderney (East Frisian coast, Germany). Hydrobiologia 142: 217–232

    Google Scholar 

  • Freeman, R. F. H., Shuttleworth T. J. (1977). Distribution of water inArenicola marina equilibrated to diluted sea water. J. mar. biol. Ass. U.K. 57: 501–509

    Google Scholar 

  • Gerlach, E. (1986). Untersuchungen zur Abgabe von Aminosäuren durch den Hautmuskelschlauch vonArenicola marina nach hyposmotischem Schock. Diplomarbeit, Universität Münster

    Google Scholar 

  • Gilles, R. (1987). Volume regulation in cells of euryhaline invertebrates. In: Kleinzeller, A. (ed.) Current topics in membranes and transport, Vol. 30. Cell volume control. Fundamental and comparative aspects in animal cells. Academic Press, San Diego, New York, p. 205–247

    Google Scholar 

  • Juretschke, H.-P., Kamp, G. (1987). In vivo31P-NMR-spektroskopische Messung des intrazellulären pH-Wertes im WattwurmArenicola marina während Sauerstoffmangel. Verh. dt. zool. Ges. 80: 214

    Google Scholar 

  • Kluytmans, J. H. F., Veenhof, P. R., Zwaan, A. de (1975). Anaerobic production of volatile fatty acids in the sea musselMytilus edulis L. J. comp. Physiol. (Sect. B) 104: 71–78

    Google Scholar 

  • Moran, W. M., Pierce, S. K. (1984). The mechanism of crustacean salinity tolerance: cell volume regulation by K+ and glycine effluxes. Mar. Biol. 81: 41–46

    Google Scholar 

  • Pierce, S. K. (1982). Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biol. bull. mar. biol. Lab., Woods Hole 163: 405–419

    Google Scholar 

  • Pierce, S. K., Greenberg, M. J. (1972). The nature of cellular volume regulation in marine bivalves. J. exp. Biol. 57: 681–692

    Google Scholar 

  • Pierce, S. K., Greenberg, M. J. (1973). The initiation and control of free amino acid regulation of cell volume in salinity stressed marine bivalves. J. exp. Biol. 59: 435–446

    Google Scholar 

  • Pierce, S. K., Greenberg, M. J. (1976). Hypoosmotic cell volume regulation in marine bivalves: the effects of membrane potential change and metabolic inhibition. Physiol. Zool. 49: 417–424

    Google Scholar 

  • Pörtner, H. O., Surholt, B., Grieshaber, M. (1979). Recovery from anaerobiosis of the lugwormArenicola marina L.: changes of metabolite concentrations in the bodywall musculature. J. comp. Physiol. (Sect. B) 133: 227–231

    Google Scholar 

  • Reitze, M., Schöttler, U. (1989). The time dependence of adaptation to reduced salinity in the lugwormArenicola marina (L.) (Annelida, Polychaeta), Comp. Biochem. Physiol. 93A: 549–559

    Google Scholar 

  • Schöttler, U. (1986). Weitere Untersuchungen zum anaeroben Energiestoffwechsel des PolychaetenArenicola marina L. Zool. Beitr. N. F. 30: 141–152

    Google Scholar 

  • Schöttler, U., Grieshaber, M. (1988). Adaptation of the polychaete wormScoloplos armiger to hypoxic conditions. Mar. Biol. 99: 215–222

    Google Scholar 

  • Schöttler, U., Schroff, G. (1976). Untersuchungen zum anaeroben Glykogen-Abbau beiTubifex tubifex. J. comp. Physiol. (Sect. B) 108: 243–254

    Google Scholar 

  • Schöttler, U., Wienhausen, G. (1981). The importance of the phosphoenolpyruvate carboxykinase in the anaerobic metabolism of two marine polychaetes. In vivo investigations onNereis virens andArenicola marina. Comp. Biochem. Physiol. 68B: 41–48

    Google Scholar 

  • Schöttler, U., Wienhausen, G., Westermann, J. (1984). Anaerobic metabolism in the lugwormArenicola marina L.: the transition from aerobic to anaerobic metabolism. Comp. Biochem. Physiol. 79B: 93–103

    Google Scholar 

  • Siegmund, B., Grieshaber, M. K. (1983). Determination of mesoalanopine and D-strombine by high pressure liquid chromatography in extracts from marine invertebrates. Hoppe-Seyler's Z. physiol. Chem. 358: 1455–1461

    Google Scholar 

  • Storey, B. K. (1985). A re-evaluation of the Pasteur effect: new mechanisms in anaerobic metabolism. Molec. Physiol. 8:439–461

    Google Scholar 

  • Wiedmeier, V. T., Porterfield, S. P., Hendrich, C. E. (1982). Quantitation of dns-amino acids from body-tissues and fluids using high-performance liquid chromatography. J. Chromat. 231: 410

    Google Scholar 

  • Zebe, E., Schöttler, U. (1986). Vergleichende Untersuchungen zur umweltbedingten Anaerobiose. Zool. Beitr. N. F. 30: 125–140

    Google Scholar 

  • Zwaan, A. de, Thillart, G. van den (1985). Low and high power output modes of anaerobic metabolism: invertebrates and vertebrates strategies. In Gilles, R. (ed.) Circulation, respiration and metabolism. Springer Verlag, Berlin, Heidelberg, New York, p. 167–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöttler, U., Daniels, D. & Zapf, K. Influence of anoxia on adaptation of euryhaline polychaetes to hyposmotic conditions. Mar. Biol. 104, 443–451 (1990). https://doi.org/10.1007/BF01314348

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314348

Keywords

Navigation