Marine Biology

, Volume 104, Issue 3, pp 369–379 | Cite as

Mangrove fish-communities in tropical Queensland, Australia: Spatial and temporal patterns in densities, biomass and community structure

  • A. I. Robertson
  • N. C. Duke


Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m−3 and 10.9±4.5 g m−3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m−2 and 29.0±12.1 g m−2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m−2 and 1.7±0.3 g m−2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.


Biomass Fish Species Mangrove Forest Fish Biomass Community Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Belbin, L. (1987). PATN pattern analysis package reference manual. CSIRO Division of Wildlife and Rangelands Research, CanberraGoogle Scholar
  2. Bell, J. D., Pollard, D. A., Burchmore, J. J., Pease, B. C., Middleton, M. J. (1984). Structure of a fish community in a temperate tidal mangrove creek in Botany Bay, New South Wales. Aust. J. mar. Freshwat. Res. 35: 33–46Google Scholar
  3. Blaber, S. J. M. (1980). Fish of the Trinity Inlet system of North Queensland with notes on the ecology of tropical Indo-Pacific estuaries. Aust. J. mar. Freshwat. Res. 31: 137–146Google Scholar
  4. Blaber, S. J. M., Young, J. W., Dunning, M. C. (1985). Community structure and zoogeographic affinities of the coastal fishes of the Dampier Region of North-western Australia. Aust. J. mar. Freshwat. Res. 36: 247–266Google Scholar
  5. Boto, K. G., Bunt, J. S. (1981). Dissolved oxygen and pH relationships in northern Australian mangrove waterways. Limnol. Oceanogr. 26: 1176–1178Google Scholar
  6. Boto, K., Bunt, K. S., Wellington, J. T. (1984). Variations in mangrove forest productivity in northern Australia and Papua New Guinea. Estuar., cstl Shelf Sci. 19: 321–329Google Scholar
  7. Conand, F. (1988). Biologie et écologie des poissons pelagiques du lagon de Nouvelle-Caledonia utilisables comme appât thonier. Office de la Recherche Scientifique et Technique Outre-Mer, rue Bayard, Paris (Editions de l'ORSTOM, Collection Etudes et Thèses)Google Scholar
  8. Davis, T. L. O. (1988). Temporal changes in the fish fauna entering a tidal swamp system in tropical Australia. Envir. Biol. Fish. 21: 161–172Google Scholar
  9. Dowling, R. M., McDonald, T. J. (1982). Mangrove communities of Queensland. In: Clugh, B. F. (ed.) Mangrove ecosystems in Australia. Australian National University Press, Canberra, p. 79–94Google Scholar
  10. Edwards, R. R. C. (1978). Ecology of a coastal lagoon complex in Mexico. Estuar., cstl Shelf Sci. 6: 75–92Google Scholar
  11. Field, J. G., Clarke, K. R., Warwick, R. M. (1982). A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52Google Scholar
  12. Hatcher, B. G., Johannes, R. E., Robertson, A. I. (1989). Review of research relevant to conservation of shallow tropical marine ecosystems. Oceanogr. mar. Biol. A. Rev. 27: 337–414Google Scholar
  13. Ingles, J., Pauly, D. (1984). An atlas of the growth, mortality and recruitment of Philippine fishes. ICLARM tech. Rep. 13: 1–127 (International Center for Living Aquatic Resources Management, Manila, Philippines)Google Scholar
  14. Kay, G. (1989). Fishermen recognize 1989 as “year of the environment”. Qd Fisherman 7(5): 23–26Google Scholar
  15. Kiener, A. (1966). Contributions a l'etude ecologique et biologique des eaux saumatres malgaches. Les poissons euryhalines et leur role dans developpement des peches. Vie Milieu 16(2c): 1013–1149Google Scholar
  16. Krishnamurthy, K., Jeyaseelan, M. J. P. (1981). The early life history of fishes from Pichavaram mangrove ecosystem of India. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 178: 416–423Google Scholar
  17. Liem, D. S., Haines, A. K. (1977). The ecological significance and economic importance of the mangrove and estuarine communities of the Gulf Province, Papua New Guinea. Purari River (Wabo) hydro-electric scheme. Envir. Stud. 3: 1–35 (Office of Environment and Conservation, Waigani, Papua New Guinea)Google Scholar
  18. Little, M. C., Reay, P. J., Grove, S. J. (1988). The fish community of an east African mangrove creek. J. Fish Biol. 32: 729–747Google Scholar
  19. Pinto, L. (1987). Environmental factors influencing the occurrence of juvenile fish in the mangroves of Pagbilao, Philippines, Hydrobiologia 150: 283–301Google Scholar
  20. Phillips, P. C. (1981). Diversity and fish community structure in a central American mangrove embayment. Revta Biol. trop. 29: 227–236Google Scholar
  21. Quinn, N. J. (1980). Analysis of temporal changes in fish assemblages in Serpentine Creek, Queensland. Envir. Biol. Fish. 5: 117–133Google Scholar
  22. Robertson, A. I. (1988a). Abundance, diet and predators of juvenile banana prawnsPenaeus merguiensis in a tropical mangrove estuary. Aust. J. mar. Freshwat. Res. 39: 467–478Google Scholar
  23. Robertson, A. I. (1988b). Links between nearshore fisheries and mangroves in tropical Australia: management implications for South Pacific nations. South Pacific Commission, Nouméa, New Caledonia (Information paper No. 24. Workshop on Pacific Inshore Fishery Resources)Google Scholar
  24. Robertson, A. I. (1988c). Food chains in tropical Australian mangrove habitats: a review of recent research. In: Field, C. D., Vannucci, M. (eds.) Symposium on new perspectives in research and management of mangrove ecosystems. UNDP/UNESCO, New Delhi, p. 23–36Google Scholar
  25. Robertson, A. I., Alongi, D. M., Daniel, P. A., Boto, K. G. (1989). How much mangrove detritus reaches the Great Barrier Reef lagoon? Proc. 6th int. Symp. coral Reefs 2: 601–606 [Choat, J. H., et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Sydney]Google Scholar
  26. Robertson, A. I., Dixon, P., Daniel, P. A. (1988). Zooplankton dynamics in mangrove and other nearshore habitats in tropical Australia. Mar. Ecol. Prog. Ser. 43: 139–150Google Scholar
  27. Robertson, A. I., Duke, N. C. (1987). Mangroves as nursery sites: comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Mar. Biol. 96: 193–205Google Scholar
  28. Saenger, P., Hegerl, E. G., Davie, J. D. S. (1983). Global status of mangrove ecosystems. Environmentalist 3: 1–88Google Scholar
  29. Sasekumar, A., Chong, V. C., Leh, M. U. C. (in press). Fish and prawn communities in mangrove estuaries and mudflats in Selangor (Malaysia). In: Alcala, A. (ed.) Proceedings ASEAN-Australia Coastal Living Resources Symposium. University of the Philippines Marine Science Institute, Quezon CityGoogle Scholar
  30. Sasekumar, A., Ong, T. L., Thong, K. L. (1984). Predation on mangrove fauna by marine fishes. In: Soepadmo, E., Rao, A. N., Macintosh, D. J. (eds.) Proceedings of the Asian Symposium on Mangrove Environment: Research and Management. UNESCO, Kuala Lumpur, p. 378–384Google Scholar
  31. Shenker, J. M., Dean, J. M: (1979). The utilization of an intertidal saltmarsh creek by larval and juvenile fishes: abundances, diversity and temporal variation. Estuaries 2: 154–163Google Scholar
  32. Smith, P. E. (1985). Year-class strength and survival of O-group clupeoids. Can. J. Fish. aquat. Sciences 42 (Suppl. 1): 69–82Google Scholar
  33. Sokal, R. R., Rohlf, F., J. (1969). Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., San FranciscoGoogle Scholar
  34. Staples, D. H., Polzin, H. G., Heales, D. S. (1985). Habitat requirements of juvenile penaeid prawns and their relationship to offshore fisheries. In: Rothlisberg, P. C., Hill, B. J., Staples, D. J. (eds.) Second Australian National Prawn Seminar, Cleveland, Australia, p. 47–54Google Scholar
  35. Stephenson, W., Dredge, M. L. C. (1976). Numerical analysis of fish catches from Serpentine Creek. Proc. R. Soc. Qd 87: 33–43Google Scholar
  36. Thayer, G. W., Colby, D. R., Hettler, W. F., Jr. (1987). Utilization of the red mangrove prop root habitat by fishes in south Florida. Mar. Ecol. Prog. Ser. 35: 25–38Google Scholar
  37. Warburton, K. (1978). Community structure, abundance and diversity of fish in a Mexican coastal lagoon system. Estuar. cstl mar. Sci. 7: 497–519Google Scholar
  38. Weinstein, M. P. (1979). Shallow marsh habitats as primary nurseries for fish and shellfish, Cape Fear River, North Carolina. Fish. Bull. U.S. 77: 339–357Google Scholar
  39. Wolanski, E., Ridd, P. (1986). Tidal mixing and trapping in mangrove swamps. Estuar., cstl Shelf Sci. 23: 759–771Google Scholar
  40. Wright, J. M. (1986). The ecology of fish occurring in shallow water creeks of a Nigerian mangrove swamp. J. Fish Biol. 29: 431–441Google Scholar
  41. Yanez-Arancibia, A. (1978). Taxonomia, ecologia y estructura de las communidades de peces en lagunas costeras con bocas efimeras del Pacifico de Mexico. Publnes esp. Cent. Cienc. Mar Limnol. Univ. nac. autón. México 2: 1–306Google Scholar
  42. Yanez-Arancibia, A., Lara-Dominguez, A. L., Rojas-Galaviz, J. L., Sanchez-Gil, P., Day, J. W., Madden, C. J. (1988). Seasonal biomass and diversity of estuarine fishes coupled with tropical habitat heterogeneity (southern Gulf of Mexico). J. Fish Biol. 33 (Suppl. A): 191–200Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. I. Robertson
    • 1
  • N. C. Duke
    • 1
    • 2
  1. 1.Australian Institute of Marine ScienceTownsville MCAustralia
  2. 2.Smithsonian Tropical Research InstituteBalboaRepublic of Panamá

Personalised recommendations