Skip to main content
Log in

Two-component Fermi systems: II. Superfluid coupled cluster theory

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

In this second paper of a series the coupled cluster method (CCM) or exp(S) formalism is applied to two-component Fermi superfluids using a Bardeen-Cooper-Schrieffer (BCS) ground state as a zeroth-order approximation. We concentrate on developing the formalism necessary for carrying out eventual numerical calculations on realistic superconducting systems. We do this by generalising the one-component formalism in an appropriate manner and by using the results in the first paper of this series, where we studied two-component Fermi fluids. We stress the previous successes of the CCM, both from the point of view of analytic and numerical results, and we further indicate its potential for studying superconductivity. We restrict ourselves here to a so-called ring plus single particle energy (RING+SPE) approximation for general potentials and show how it can be formulated as a set of four coupled, bilinear integral equations for the cluster-integrated amplitudes. These latter amplitudes are themselves derived from the four-point functions of the system which provide a measure of the two-particle/two-hole component in the true ground-state wavefunction with respect to the BCS model state. We indicate how to obtain possible analytic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop, R.F., Kümmel, H.: Phys. Today40 (3), 52 (1987)

    Google Scholar 

  2. Bishop, R.F., Lahoz, W.A.: J. Phys. A20 (13) 4203 (1987)

    Google Scholar 

  3. Zabolitzky, J.G.: Nucl. Phys. A228, 272 (1974)

    Google Scholar 

  4. Zabolitzky, J.G.: Nucl. Phys. A228, 285 (1974)

    Google Scholar 

  5. Kümmel, H., Lührmann, K.H., Zabolitzky J.G.: Phys. Rep.36C, 1 (1978)

    Google Scholar 

  6. Bishop, R.F., Lührmann, K.H.: Phys. Rev. B17, 3757 (1978)

    Google Scholar 

  7. Bishop, R.F., Lührmann, K.H.: Phys. Rev. B26, 5523 (1982)

    Google Scholar 

  8. Emrich K., Zabolitzky, J.G.: Phys. Rev. B30, 2049 (1984)

    Google Scholar 

  9. Ĉižek, J.: J. Chem. Phys.45, 4256 (1966)

    Google Scholar 

  10. Ĉižek, J.: Adv. Chem. Phys.14, 35 (1969)

    Google Scholar 

  11. Lindgren, I.: Int. J. Chem. Symp.12, 33 (1978)

    Google Scholar 

  12. Kvasniĉka, V., Laurinc, V., Biskupiĉ, S.: Phys. Rep.90C, 160 (1982)

    Google Scholar 

  13. Szalewicz, K., Zabolitzky, J.G., Jeziorski, B., Monkhorst, H.J.: J. Chem. Phys.81, 2723 (1984)

    Google Scholar 

  14. Arponen, J.: Ann. Phys. (NY)151, 311 (1983)

    Google Scholar 

  15. Emrich, K.: Nucl. Phys. A351, 379 (1981)

    Google Scholar 

  16. Emrich, K.: Nucl. Phys. A351, 397 (1981)

    Google Scholar 

  17. Offermann, R., Ey, W., Kümmel, H.: Nucl. Phys. A273, 349 (1976)

    Google Scholar 

  18. Offermann, R.: PhD Thesis, Ruhr Universität Bochum, Bochum (1975; unpublished)

  19. Offermann, R.: Nucl. Phys. A273, 368 (1976)

    Google Scholar 

  20. Ey, W.: Nucl. Phys. A296, 189 (1978)

    Google Scholar 

  21. Robinson, N.I.: PhD Thesis, Manchester University (1986; unpublished)

  22. Kümmel, H.: In: Nucleon-nucleon interaction and nuclear many-body problems. Wu, S.S., Kuo, T.T.S. (eds.). Singapore: World Scientific 1984

    Google Scholar 

  23. Bishop, R.F.: An. Fis. A81, 9 (1985)

    Google Scholar 

  24. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev.108, 1175 (1957)

    Google Scholar 

  25. Bogoliubov, N.N.: Zh. Eksp. Teor. Fiz.34, 58 (Sov. Phys. JETP7, 41) (1958)

    Google Scholar 

  26. Fetter, A.L., Walecka, J.D.: Quantum theory of many-particle systems. New York: McGraw-Hill 1971

    Google Scholar 

  27. Cooper, L.N.: Phys. Rev.104, 1189 (1956)

    Google Scholar 

  28. Valatin, J.: Nuovo Cimento7, 843 (1958)

    Google Scholar 

  29. Emrich, K.: Lecture Notes in Physics. Vol. 142: Recent progress in many-body theories. Proceedings of the Second International Conference at Oaxtepec, Mexico, January 12–17 1981. Zabolitzky, J.G., Llano, M. de, Fortes, M., Clark, J.W. (eds.), p. 121. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  30. Emrich, K., Zabolitzky, J.G.: Lecture Notes in Physics. Vol. 198: Recent progress in many-body theories. Proceedings of the Third International Conference on Recent Progress in Many-Body Theories Held at Oldenthal-Altenberg, Germany, August 29–September 3, 1983, p. 271. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  31. Emrich, K., Zabolitzky, J.G.: An. Fis. A81, 17 (1985)

    Google Scholar 

  32. Emrich, K., Kümmel, H., Zabolitzky, J.G.: Ruhr Universität Bochum preprint, RUB/TP II-87-3 (1987)

  33. Emrich, K.: (1988; unpublished)

  34. Lahoz, W.A.: PhD Thesis, Manchester University (1986; unpublished)

  35. Muskhelishvili, N.I.: Singular integral equations. Groningen: Noordhoff, 1953

    Google Scholar 

  36. Omnès, R.: Nuovo Cimento8, 316 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahoz, W.A., Bishop, R.F. Two-component Fermi systems: II. Superfluid coupled cluster theory. Z. Physik B - Condensed Matter 73, 363–375 (1988). https://doi.org/10.1007/BF01314275

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314275

Keywords

Navigation