Skip to main content
Log in

Comparison of variational approaches for the exactly solvable 1/r-Hubbard chain

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for halffilled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the 1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. It is thus seen that neither Hartree-Fock nor an energetically excellent Jastrow-type wave function yield a reliable prediction on the zero temperature phase transition in the one-dimensional 1/r-Hubbard chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penn, D.R.: Phys. Rev.142, 350 (1966); Langer, W., Plischke, M., Mattis, D.: Phys. Rev. Lett.23, 1448 (1969); Dichtel, K., Jelitto, R.J., Koppe, H.: Z. Phys.246, 248 (1971)

    Google Scholar 

  2. Gutzwiller, M.C.: Phys. Rev. Lett.10, 159 (1963); Phys. Rev. A134, 923 (1964)

    Google Scholar 

  3. Fulde, P.: Electron correlations in moleculs and solids (Springer Series in Solid State Sciences, Vol. 100), Berlin, Heidelberg, New York: Springer 1991

    Google Scholar 

  4. Feenberg, E.: Theory of quantum fluids. New York: Academic Press 1969; Campbell, C.E.: In: Progress in liquid physics. Croxton, C.A. (ed.), p. 213, New York, Wiley 1978

    Google Scholar 

  5. Gebhard, F., Ruckenstein, A.E.: Phys. Rev. Lett.68, 244 (1992)

    Google Scholar 

  6. Hubbard, J.: Proc. R. Soc. London Ser. A276, 238 (1963); Kanamori, J.: Prog. Theor. Phys.30, 275 (1963)

    Google Scholar 

  7. Haldane, F.D.M.: Phys. Rev. Lett.60, 635 (1988); Shastry, B.S.: Phys. Rev. Lett.60, 639 (1988)

    Google Scholar 

  8. Gebhard, F., Girndt, A., Ruckenstein, A.E.: (in preparation)

  9. Lieb, E.H., Wu, F.Y.: Phys. Rev. Lett.20, 1445 (1968)

    Google Scholar 

  10. Metzner, W., Vollhardt, D.: Phys. Rev. Lett.59, 121 (1987); Phys. Rev. B37, 7382 (1988)

    Google Scholar 

  11. Gebhard, F., Vollhardt, D.: Phys. Rev. Lett.59, 1472 (1987); Phys. Rev. B38, 6911 (1988)

    Google Scholar 

  12. For a short review on Gutzwiller-correlated wave functions, see Vollhardt, D., Dongen, P.G.J. van, Gebhard, F., Metzner, W.: Mod. Phys. Lett. B4, 499 (1990)

    Google Scholar 

  13. Metzner, W., Vollhardt, D.: Phys. Rev. Lett.62, 324 (1989)

    Google Scholar 

  14. Gebhard, F.: Phys. Rev. B41, 9452 (1990)

    Google Scholar 

  15. Strack, R., Vollhardt, D.: Mod. Phys. Lett. B5, 1377 (1991); J. Low. Temp. Phys.84, 357 (1991)

    Google Scholar 

  16. Gebhard, F.: Phys. Rev. B44, 992 (1991)

    Google Scholar 

  17. Baeriswyl, D.: In: Nonlinearity in condenset matter (Springer Series in Solid State Sciences, Vol. 69). Bishop, R., et al. (eds.), p. 183, Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  18. See, for example, Uhrig, G.: Phys. Rev. B45, 4738 (1992), and references therein; note that these considerations have to be modified for the case of long-range exchange; the results still hold in one dimension

    Google Scholar 

  19. Brinkman, W.F., Rice, T.M.: Phys. Rev. B2, 4302 (1970)

    Google Scholar 

  20. vollhardt, D.: Rev. Mod. Phys.56, 99 (1984)

    Google Scholar 

  21. Dongen, P.G.J. van, Gebhard, F., Vollhardt, D.: Z. Phys. B76, 199 (1989)

    Google Scholar 

  22. Kaplan, T.A., Horsch, P., Fulde, P.: Phys. Rev. Lett.49, 889 (1982); Yokoyama, H., Shiba, H.: J. Phys. Soc. Jpn.56, 1490 (1987); Gros, C., Joynt, R., Rice, T.M.: Phys. Rev. B36, 381 (1987)

    Google Scholar 

  23. Haldane, F.D.M.: J. Phys. C14, 2585 (1981); Phys. Rev. Lett.45, 1358 (1980);47, 1840 (1981)

    Google Scholar 

  24. In Refs. 5, 8 we used this pictorial representation for eigenstates of the effective Hamiltonian while we use it here for the representation of eigenstates of the kinetic energy operator

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebhard, F., Girndt, A. Comparison of variational approaches for the exactly solvable 1/r-Hubbard chain. Z. Physik B - Condensed Matter 93, 455–463 (1994). https://doi.org/10.1007/BF01314250

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314250

PACS

Navigation