Abstract
The radiate-accretive growth process of the spongeHaliclona oculata, under different environmental conditions, is simulated in a two-dimensional model with fractal modelling techniques. In this model material is added in layers to the object, and growth velocities attain highest values at its protrusions. With this model some aspects of the growth process can be explained. It is possible to simulate thin-branching growth forms, which are normally found under sheltered conditions, and plate-like forms, which are typical for sites more exposed to water movement. These simulated forms are compared with actual growth forms in order to test the validity of the model.
This is a preview of subscription content, access via your institution.
Literature cited
Aona, M., Kunii, L. (1984). Botanical tree image generation. Inst. elect. electron. Engrs (IEEE) Computer Graphics and Applications 8: 10–34
Bradbury, R. H., Reichelt, R. E. (1983). Fractal dimension of a coral reef at ecological scales. Mar. Ecol. Prog. Ser. 10: 169–172
Brien, P.; Lévi, C., Sara, M., Tuzet, O., Vacelet, J. (1973). Traité de zoologie, anatomie, systématique, biologie, Tome III, Spongiares, fascicule 1. Masson et Cie Editeurs, Paris
de Kluijver, M. J. (1989). Sublittoral hard substrate communities of the Southern Delta area, SW Netherlands. Bijdr. Dierk. 59: 141–158
de Weerdt, W. H. (1986). A systematic revision of the North-Eastern Atlantic shallow-water Haploscleridae (Porifera, Demospongiae), part III: Chalinidea. Beaufortia 36: 81–165
Family, F., Masters, B. R., Platt, D. E. (1989). Fractal patterns formation in human retinal vessels. Physica D 38: 98–103
Fujikawa, H., Matsushita, M. (1989). Fractal growth ofBacillus subtilis on agar plates. J. phys. Soc. Japan 58: 3875–3878
Graus, R. R. (1977). Investigation of coral growth adaptations using computer modeling. In: Taylor, D. L. (ed.) Proceedings of the third international coral reef symposium, Vol. II. Rosenthiel School of Marine and Atmospheric Sciences, Miami, p. 463–469
Graus, R. R., Macintyre, I. G. (1982). Variation in growth forms of the reef coralMontastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464
Harper, J. L., Rosen, B. R., White, J. (1986). The growth and form of modular organisms. The Royal Society, London
Hartman, W. D. (1958). Natural history of the marine sponges of southern New England. Bull. Peabody Mus. nat. Hist. 12: 1–155
Jackson, J. B. C. (1979). Morphological strategies of sessile animals. In: Larwood, C., Rosen, B. R. (eds.) Biology and systematics of colonial organisms, Vol. II. Academic Press, London, p. 499–555
Johnston, G. (1862). A history of British sponges and lithophytes. Lizars, Edinburgh
Kaandorp, J. A. (1991). Modelling growth forms of sponges with fractal techniques. In: Crilly, A. J., Earnshaw, R. A., Jones, H. (eds.) Fractals and chaos. Springer-Verlag, Berlin, p. 71–88
Kawaguchi, Y. (1982). A morphological study of the form of nature. Comput. Graphics 16(3): 223–232
Lindenmayer, A. (1968). Mathematical models for cellular interactions in development. J. theor. Biol. 18: 280–299
Mandelbrot, B. B. (1983). The fractal geometry of nature. W. H. Freeman, San Francisco
Meakin, P. (1986). A new model for biological pattern formation. J. theor. Biol. 118: 101–113
Morse, D. R., Lawton, J. H., Dodson, M. M., Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body length. Nature, Lond. 314: 731–733
Niemeyer, L., Pietronero, L., Wiesmann, H. J. (1984). Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52: 1033–1036
Prusinkiewicz, P., Lindenmayer, A. (1990). The algorithmic beauty of plants. Springer-Verlag, Berlin
Prusinkiewicz, P., Lindenmayer, A., Haman, J. (1988). Developmental models of herbaceous plants for computer imagery purposes. Comput. Graphics 22(4): 141–150
Thompson, D. W. (1942). On growth and form. Cambridge University Press, Cambridge
Turcotte, D. L., Smalley, R. F., Jr., Solla, S. A. (1985). Collapse of loaded fractal trees. Nature, Lond. 313: 671–672
Wiedenmayer, F. (1977). Shallow-water sponges of the western Bahamas. Birkhäuser Verlag, Basel
Witten, T. A., Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47: 1400–1403
Wlczek, P., Bittner, H. R., Sernetz, M. (1989). 3-Dimensional image-analysis and synthesis of natural fractals. Acta Stereologica 8: 315–324
Author information
Authors and Affiliations
Additional information
Communicated by O. Kinne, Oldendorf/Luhe
Rights and permissions
About this article
Cite this article
Kaandorp, J.A. Modelling growth forms of the spongeHaliclona oculata (Porifera, Demospongiae) using fractal techniques. Mar. Biol. 110, 203–215 (1991). https://doi.org/10.1007/BF01313706
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01313706