Skip to main content

Modelling growth forms of the spongeHaliclona oculata (Porifera, Demospongiae) using fractal techniques

Abstract

The radiate-accretive growth process of the spongeHaliclona oculata, under different environmental conditions, is simulated in a two-dimensional model with fractal modelling techniques. In this model material is added in layers to the object, and growth velocities attain highest values at its protrusions. With this model some aspects of the growth process can be explained. It is possible to simulate thin-branching growth forms, which are normally found under sheltered conditions, and plate-like forms, which are typical for sites more exposed to water movement. These simulated forms are compared with actual growth forms in order to test the validity of the model.

This is a preview of subscription content, access via your institution.

Literature cited

  • Aona, M., Kunii, L. (1984). Botanical tree image generation. Inst. elect. electron. Engrs (IEEE) Computer Graphics and Applications 8: 10–34

    Google Scholar 

  • Bradbury, R. H., Reichelt, R. E. (1983). Fractal dimension of a coral reef at ecological scales. Mar. Ecol. Prog. Ser. 10: 169–172

    Google Scholar 

  • Brien, P.; Lévi, C., Sara, M., Tuzet, O., Vacelet, J. (1973). Traité de zoologie, anatomie, systématique, biologie, Tome III, Spongiares, fascicule 1. Masson et Cie Editeurs, Paris

    Google Scholar 

  • de Kluijver, M. J. (1989). Sublittoral hard substrate communities of the Southern Delta area, SW Netherlands. Bijdr. Dierk. 59: 141–158

    Google Scholar 

  • de Weerdt, W. H. (1986). A systematic revision of the North-Eastern Atlantic shallow-water Haploscleridae (Porifera, Demospongiae), part III: Chalinidea. Beaufortia 36: 81–165

    Google Scholar 

  • Family, F., Masters, B. R., Platt, D. E. (1989). Fractal patterns formation in human retinal vessels. Physica D 38: 98–103

    Google Scholar 

  • Fujikawa, H., Matsushita, M. (1989). Fractal growth ofBacillus subtilis on agar plates. J. phys. Soc. Japan 58: 3875–3878

    Google Scholar 

  • Graus, R. R. (1977). Investigation of coral growth adaptations using computer modeling. In: Taylor, D. L. (ed.) Proceedings of the third international coral reef symposium, Vol. II. Rosenthiel School of Marine and Atmospheric Sciences, Miami, p. 463–469

    Google Scholar 

  • Graus, R. R., Macintyre, I. G. (1982). Variation in growth forms of the reef coralMontastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464

    Google Scholar 

  • Harper, J. L., Rosen, B. R., White, J. (1986). The growth and form of modular organisms. The Royal Society, London

    Google Scholar 

  • Hartman, W. D. (1958). Natural history of the marine sponges of southern New England. Bull. Peabody Mus. nat. Hist. 12: 1–155

    Google Scholar 

  • Jackson, J. B. C. (1979). Morphological strategies of sessile animals. In: Larwood, C., Rosen, B. R. (eds.) Biology and systematics of colonial organisms, Vol. II. Academic Press, London, p. 499–555

    Google Scholar 

  • Johnston, G. (1862). A history of British sponges and lithophytes. Lizars, Edinburgh

    Google Scholar 

  • Kaandorp, J. A. (1991). Modelling growth forms of sponges with fractal techniques. In: Crilly, A. J., Earnshaw, R. A., Jones, H. (eds.) Fractals and chaos. Springer-Verlag, Berlin, p. 71–88

    Google Scholar 

  • Kawaguchi, Y. (1982). A morphological study of the form of nature. Comput. Graphics 16(3): 223–232

    Google Scholar 

  • Lindenmayer, A. (1968). Mathematical models for cellular interactions in development. J. theor. Biol. 18: 280–299

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. W. H. Freeman, San Francisco

    Google Scholar 

  • Meakin, P. (1986). A new model for biological pattern formation. J. theor. Biol. 118: 101–113

    Google Scholar 

  • Morse, D. R., Lawton, J. H., Dodson, M. M., Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body length. Nature, Lond. 314: 731–733

    Google Scholar 

  • Niemeyer, L., Pietronero, L., Wiesmann, H. J. (1984). Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52: 1033–1036

    Google Scholar 

  • Prusinkiewicz, P., Lindenmayer, A. (1990). The algorithmic beauty of plants. Springer-Verlag, Berlin

    Google Scholar 

  • Prusinkiewicz, P., Lindenmayer, A., Haman, J. (1988). Developmental models of herbaceous plants for computer imagery purposes. Comput. Graphics 22(4): 141–150

    Google Scholar 

  • Thompson, D. W. (1942). On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Turcotte, D. L., Smalley, R. F., Jr., Solla, S. A. (1985). Collapse of loaded fractal trees. Nature, Lond. 313: 671–672

    Google Scholar 

  • Wiedenmayer, F. (1977). Shallow-water sponges of the western Bahamas. Birkhäuser Verlag, Basel

    Google Scholar 

  • Witten, T. A., Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47: 1400–1403

    Google Scholar 

  • Wlczek, P., Bittner, H. R., Sernetz, M. (1989). 3-Dimensional image-analysis and synthesis of natural fractals. Acta Stereologica 8: 315–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaandorp, J.A. Modelling growth forms of the spongeHaliclona oculata (Porifera, Demospongiae) using fractal techniques. Mar. Biol. 110, 203–215 (1991). https://doi.org/10.1007/BF01313706

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313706

Keywords