Skip to main content
Log in

Measurement of a phonon hot spot in photoexcited Si

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

High frequency phonons are produced by the thermalization of photoexcited electronhole pairs in a semiconductor. Inelastic and elastic scattering processes determine the frequency down-conversion and diffusion of this thermal energy. Simple estimates of the anharmonic and isotope scattering processes suggest that the acoustic phonons will undergo a quasi-diffusive propagation process. In particular, non-equilibrium phonons high-resolution phonon-imaging experiments presented here show well defined ballistic pulses and sharp phonon-focusing caustics. We explain this discrepancy in terms of a phonon hot spot which acts to efficiently down-convert the high-frequency phonons very near the excitation spot. We present the first measurements of the size of a phonon hot spot, which depends upon excitation power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hensel, J.C., Dynes, R.C.: Phys. Rev. Lett.39, 969 (1977)

    Google Scholar 

  2. Kazakovtsev, D.V., Levinson, Y.B.: Sov. Phys. JETP61, 1318 (1985)

    Google Scholar 

  3. Kazakovtsev, D.V., Levinson, Y.B.: Phys. Status Solidi136, 425 (1986)

    Google Scholar 

  4. Guseinov, N.M., Orudzhev, G.S.: Sov. Phys. Solid State29, 1308 (1987)

    Google Scholar 

  5. Greenstein, M., Tamor, M.A., Wolfe, J.P.: Phys. Rev. B26, 5604 (1982)

    Google Scholar 

  6. Greenstein, M., Tamor, M.A., Wolfe, J.P.: Phys. Rev. B27, 7353 (1983)

    Google Scholar 

  7. Cabrera, B., Krauss, L.M., Wilczek, F.: Phys. Rev. Lett.55, 25, (1985)

    Google Scholar 

  8. Maris, H.J.: Phonon scattering in condensed matter V. Anderson, A.C., Wolfe, J.P. (eds.). Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  9. Northrop, G.A., Wolfe, J.P.: Nonequilibrium phonon dynamics. Bron, W.E. (ed.). New York: Plenum Press 1985

    Google Scholar 

  10. Maris, H.J.: Nonequilibrium phonons in nonmetallic crystals. Eisenmenger, W., Kaplyanskii, A.A. (eds.) Chap. 1 Amsterdam: North-Holland 1986

    Google Scholar 

  11. This crystal was pulled from the melt using a MCZ (magnetic Czochralski) process to suppress defects. There are less than 5 ppm O2 and C impurities andp=2000 Ω-cm at 300 K.

  12. Weis, O.: Z. Angew. Phys.26, 325 (1969)

    Google Scholar 

  13. These techniques are reviewed in Ref. 9. The elastic contants used here are those measured at 300K,C 11=1.658,C 12=0.639,C 44=0.796×1012 dynes/cm2, by McSkimin, H.J., Andreatch, Jr., P.: J. Appl. Phys.35, 2161 (1964)

    Google Scholar 

  14. Tamura, S.: Phys. Rev. B31, 2574 (1985)

    Google Scholar 

  15. Bron, W.E., Levinson, Y.B., O'Connor, J.M.: Phys. Rev. Lett.49, 209 (1982)

    Google Scholar 

  16. kazakovtsev, D.V., Levinson, Y.B.: Phys. Status Solidi96, 117 (1979)

    Google Scholar 

  17. Levinson, Y.B.: Nonequilibrium phonons in nonmetallic crystals. Eisenmenger, W., Kaplyanskii, A.A. (eds.), p. 91 Amsterdam: North-Holland 1986

    Google Scholar 

  18. Maris, H.J.: Phys. Rev. B28, 7033 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, J.A., Wolfe, J.P. Measurement of a phonon hot spot in photoexcited Si. Z. Physik B - Condensed Matter 75, 11–15 (1989). https://doi.org/10.1007/BF01313562

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313562

Keywords

Navigation